Your browser doesn't support javascript.
loading
Research on phase modulation to enhance the feature of high-frequency steady-state asymmetric visual evoked potentials / 生物医学工程学杂志
Journal of Biomedical Engineering ; (6): 409-417, 2023.
Article in Chinese | WPRIM | ID: wpr-981557
ABSTRACT
High-frequency steady-state asymmetric visual evoked potential (SSaVEP) provides a new paradigm for designing comfortable and practical brain-computer interface (BCI) systems. However, due to the weak amplitude and strong noise of high-frequency signals, it is of great significance to study how to enhance their signal features. In this study, a 30 Hz high-frequency visual stimulus was used, and the peripheral visual field was equally divided into eight annular sectors. Eight kinds of annular sector pairs were selected based on the mapping relationship of visual space onto the primary visual cortex (V1), and three phases (in-phase[0º, 0º], anti-phase [0º, 180º], and anti-phase [180º, 0º]) were designed for each annular sector pair to explore response intensity and signal-to-noise ratio under phase modulation. A total of 8 healthy subjects were recruited in the experiment. The results showed that three annular sector pairs exhibited significant differences in SSaVEP features under phase modulation at 30 Hz high-frequency stimulation. And the spatial feature analysis showed that the two types of features of the annular sector pair in the lower visual field were significantly higher than those in the upper visual field. This study further used the filter bank and ensemble task-related component analysis to calculate the classification accuracy of annular sector pairs under three-phase modulations, and the average accuracy was up to 91.5%, which proved that the phase-modulated SSaVEP features could be used to encode high- frequency SSaVEP. In summary, the results of this study provide new ideas for enhancing the features of high-frequency SSaVEP signals and expanding the instruction set of the traditional steady state visual evoked potential paradigm.
Subject(s)

Full text: Available Index: WPRIM (Western Pacific) Main subject: Evoked Potentials, Visual / Signal-To-Noise Ratio / Brain-Computer Interfaces / Healthy Volunteers Limits: Humans Language: Chinese Journal: Journal of Biomedical Engineering Year: 2023 Type: Article

Similar

MEDLINE

...
LILACS

LIS

Full text: Available Index: WPRIM (Western Pacific) Main subject: Evoked Potentials, Visual / Signal-To-Noise Ratio / Brain-Computer Interfaces / Healthy Volunteers Limits: Humans Language: Chinese Journal: Journal of Biomedical Engineering Year: 2023 Type: Article