Study on the differentiation of rat bone marrow mesenchymal stem cells into islet-like cell masses under co-culture conditions / 中华胰腺病杂志
Chinese Journal of Pancreatology
; (6): 439-445, 2022.
Article
in Zh
| WPRIM
| ID: wpr-991177
Responsible library:
WPRO
ABSTRACT
Objective:
To examine the possibility of the differentiation into islet-like cell clusters from the co-culture system of bone marrow mesenchymal stem cells (BMSCs) and islet cells.Methods:
Rat BMSCs from the femur and tibia of Wistar rats were isolated and purified taken under aseptic conditions; the surface markers CD 44 and CD 90 expressions of BMSCs were detected by flow cytometry; and alizarin red staining and oil red O staining were used to identify the cells induced in the osteogenic direction and adipogenic direction, respectively. Rat islet cells from the pancreas of Wistar rats were isolated and purified; and dithiazone staining was performed for validation. The basal insulin level of the culture was detected by ELISA method. 5.6mmol/L (low glucose) and 25.0 mmol/L (high glucosa) glucose were added to the culture, respectively, and insulin release was detected by ELISA. 5-generation BMSCs and islet cells were collected and divided randomly into stem cell culture alone group (stem cell group), stem cell-islet co-culture group (co-culture group), and islet culture alone group (islet group). The morphological changes of BMSCs during co-culture were observed using an inverted phase contrast microscope; basal insulin secretion and insulin secretion stimulated by low and high glucose were tested by ELISA. Insulin protein expression in induced islet-like cell masses in co-culture group were detected by immunocytochemical staining. The ultrastructure of islet-like cells was observed by using transmission electron microscopy.Results:
The positive rates of CD 44 and CD 90 were 99.48% and 99.50%, respectively; BMSCs were induced the formation of multiple calcium nodules outside the differentiation cells in the osteogenic direction, and many lipid droplets in the cytoplasm of differentiated cells in the adipogenic direction. Dithiazone staining showed that β cells in pancreatic islet were brown red and about 450 islets could be obtained per pancreas with a mean purity up to 80%. The insulin release in the low sugar group and the high sugar group were (7.105±1.551) mIU/ml and (20.231±1.592) mIU/ml, respectively, with a statistically significant difference ( P<0.05). It can be seen that local stem cells began to gather and grow upward into small clumps in the budding manner until finally forming a spherical islet-like cell cluster structure after 7 days of culture in the co-culture group. The basal insulin secretion in the stem cell group was <0.5 mIU/L. In the islet group, insulin secretion peaked on the 5th day and then gradually decreased to about 20% of the highest value on the 13th day. The insulin level of the co-culture group peaked on the 5th day, and the 13th day remained at about 40% of the peak level. There were statistically significant differences on basal insulin secretion on the 8th, 10th and 13th day between islet group and co-culture group (all P value >0.05). There was no statistically significant difference between the insulin release by islet in islet group under the stimulation of low and high sugar and that by islet-like cell cluster in co-culture group. There were a large number of brownish-yellow granules in the islet-like cell clusters after the co-culture for 14 days; and there were more secretory granules and coarse endoplasmic reticulum in the ultrastructure, showing more active protein secretion functions.Conclusions:
The co-culture system of BMSCs and islet cells could induce BMSCs into differentiating into islet-like cell clusters, which can express insulin protein and had relatively mature function of insulin secretion.
Full text:
1
Index:
WPRIM
Language:
Zh
Journal:
Chinese Journal of Pancreatology
Year:
2022
Type:
Article