Your browser doesn't support javascript.
loading
A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data
Vieceli, Tarsila; Oliveira Filho, Cilomar Martins de; Berger, Mariana; Saadi, Marina Petersen; Salvador, Pedro Antonio; Anizelli, Leonardo Bressan; Crivelaro, Pedro Castilhos de Freitas; Butzke, Mauricio; Zappelini, Roberta de Souza; Seligman, Beatriz Graeff dos Santos; Seligman, Renato.
Afiliación
  • Vieceli, Tarsila; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Oliveira Filho, Cilomar Martins de; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Berger, Mariana; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Saadi, Marina Petersen; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Salvador, Pedro Antonio; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Anizelli, Leonardo Bressan; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Crivelaro, Pedro Castilhos de Freitas; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Butzke, Mauricio; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Zappelini, Roberta de Souza; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Seligman, Beatriz Graeff dos Santos; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
  • Seligman, Renato; Hospital de Clínicas de Porto Alegre. Departamento de Medicina Interna. Porto Alegre. BR
Braz. j. infect. dis ; Braz. j. infect. dis;24(4): 343-348, Jul.-Aug. 2020. tab, graf
Article en En | LILACS, ColecionaSUS | ID: biblio-1132463
Biblioteca responsable: BR1.1
ABSTRACT
Abstract Objectives Differential diagnosis of COVID-19 includes a broad range of conditions. Prioritizing containment efforts, protective personal equipment and testing can be challenging. Our aim was to develop a tool to identify patients with higher probability of COVID-19 diagnosis at admission. Methods This cross-sectional study analyzed data from 100 patients admitted with suspected COVID-19. Predictive models of COVID-19 diagnosis were performed based on radiology, clinical and laboratory findings; bootstrapping was performed in order to account for overfitting. Results A total of 29% of patients tested positive for SARS-CoV-2. Variables associated with COVID-19 diagnosis in multivariate analysis were leukocyte count ≤7.7 × 103 mm-3, LDH >273 U/L, and chest radiographic abnormality. A predictive score was built for COVID-19 diagnosis, with an area under ROC curve of 0.847 (95% CI 0.77-0.92), 96% sensitivity and 73.5% specificity. After bootstrapping, the corrected AUC for this model was 0.827 (95% CI 0.75-0.90). Conclusions Considering unavailability of RT-PCR at some centers, as well as its questionable early sensitivity, other tools might be used in order to identify patients who should be prioritized for testing, re-testing and admission to isolated wards. We propose a predictive score that can be easily applied in clinical practice. This score is yet to be validated in larger populations.
Asunto(s)
Palabras clave

Texto completo: 1 Índice: LILACS Asunto principal: Neumonía Viral / Infecciones por Coronavirus / Técnicas de Laboratorio Clínico Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Female / Humans / Male Idioma: En Revista: Braz. j. infect. dis Asunto de la revista: DOENCAS TRANSMISSIVEIS Año: 2020 Tipo del documento: Article

Texto completo: 1 Índice: LILACS Asunto principal: Neumonía Viral / Infecciones por Coronavirus / Técnicas de Laboratorio Clínico Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Female / Humans / Male Idioma: En Revista: Braz. j. infect. dis Asunto de la revista: DOENCAS TRANSMISSIVEIS Año: 2020 Tipo del documento: Article