Your browser doesn't support javascript.
loading
Dynamic Model for Assisted Reproductive Technology Outcome Prediction
Kothandaraman, Ranjini; Andavar, Suruliandi; Raj, Raja Soosaimarian Peter.
  • Kothandaraman, Ranjini; ManonmaniamSundaranar University. Department of Computer Science and Engineering. Tirunelveli. IN
  • Andavar, Suruliandi; Manonmaniam Sundaranar University. Department of Computer Science and Engineering. Tirunelveli. IN
  • Raj, Raja Soosaimarian Peter; Vellore Institute of Technology. School of Computer Science and Engineering. Vellore. IN
Braz. arch. biol. technol ; 64: e21200758, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1339312
ABSTRACT
Abstract Infertility is becoming a growing issue in almost all countries. Assisted Reproductive Technologies (ART) are recent development in treating infertility that give hope to the infertile couples. However, the pregnancy rates achieved with the aid of ART is considerably low, as success in ART is not only based on the treatment but also on many other controllable and uncontrollable biological, social, and environmental features. High expenditures and painful process of ART cycles are the two major barriers for opting for ART. Moreover, ART treatments are not covered by any health insurance schemes. Computational prediction models could be used to improve the success rate by predicting the treatment outcome, before the start of an ART cycle. This may suggest the couples and the doctors to decide on the next course of action i.e. either to opt for ART or opt for correcting determinants or quit the ART. With the intension to improve the success rate of ART by providing decision support system to the physicians as well to the patients before entering into the treatment this research work proposes a dynamic model for ART outcome prediction using Machine Learning (ML) techniques. The proposed dynamic model is partially implemented with the help of an ensemble of heterogeneous incremental classifier and its performance is compared with state-of-art classifiers such as Naïve Bayes (NB), Random Forest (RF), K-star etc.,using ART dataset. Performance of the model is evaluated with various metrics such as accuracy, Precision Recall Curve (PRC), Receiver Operating Characteristic (ROC), F-Measure etc., However, ROC cure area is taken as the chief metric. Evaluation results shows that the model achieves the performance with the ROC area value of 94.1 %.
Asunto(s)


Texto completo: Disponible Índice: LILACS (Américas) Asunto principal: Técnicas Reproductivas Asistidas / Aprendizaje Automático / Predicción Tipo de estudio: Estudio pronóstico / Factores de riesgo Idioma: Inglés Revista: Braz. arch. biol. technol Asunto de la revista: Biologia Año: 2021 Tipo del documento: Artículo País de afiliación: India Institución/País de afiliación: Manonmaniam Sundaranar University/IN / ManonmaniamSundaranar University/IN / Vellore Institute of Technology/IN

Similares

MEDLINE

...
LILACS

LIS


Texto completo: Disponible Índice: LILACS (Américas) Asunto principal: Técnicas Reproductivas Asistidas / Aprendizaje Automático / Predicción Tipo de estudio: Estudio pronóstico / Factores de riesgo Idioma: Inglés Revista: Braz. arch. biol. technol Asunto de la revista: Biologia Año: 2021 Tipo del documento: Artículo País de afiliación: India Institución/País de afiliación: Manonmaniam Sundaranar University/IN / ManonmaniamSundaranar University/IN / Vellore Institute of Technology/IN