Your browser doesn't support javascript.
loading
Numeric reconstruction of 2D cellular actomyosin network from substrate displacement
Nishitani, Wagner Shin; Carbonari, Ronny Calixto; Alencar, Adriano Mesquita.
  • Nishitani, Wagner Shin; Universidade de São Paulo. Physics Institute. São Paulo. BR
  • Carbonari, Ronny Calixto; Universidade de São Paulo. Physics Institute. São Paulo. BR
  • Alencar, Adriano Mesquita; Universidade de São Paulo. Physics Institute. São Paulo. BR
Res. Biomed. Eng. (Online) ; 31(4): 328-333, Oct.-Dec. 2015. graf
Artículo en Inglés | LILACS | ID: biblio-829452
ABSTRACT

Introduction:

One of the fundamental structural elements of the cell is the cytoskeleton. Along with myosin, actin microfilaments are responsible for cellular contractions, and their organization may be related to pathological changes in myocardial tissue. Due to the complexity of factors involved, numerical modeling of the cytoskeleton has the potential to contribute to a better understanding of mechanical cues in cellular activities. In this work, a systematic method was developed for the reconstruction of an actomyosin topology based on the displacement exerted by the cell on a flexible substrate. It is an inverse problem which could be considered a phenomenological approach to traction force microscopy (TFM). Methods An actomyosin distribution was found with a topology optimization method (TOM), varying the material density and angle of contraction of each element of the actomyosin domain. The routine was implemented with a linear material model for the bidimensional actomyosin elements and tridimensional substrate. The topology generated minimizes the nodal displacement squared differences between the generated topology and experimental displacement fields obtained by TFM. The structure resulting from TOM was compared to the actin structures observed experimentally with a GFP-attached actin marker. Results The optimized topology reproduced the main features of the experimental actin and its squared displacement differences were 11.24 µm2, 27.5% of the sum of experimental squared nodal displacements (40.87 µm2). Conclusion This approach extends the literature with a model for the actomyosin structure capable of distributing anisotropic material freely, allowing heterogeneous contraction over the cell extension.


Texto completo: Disponible Índice: LILACS (Américas) Tipo de estudio: Estudio pronóstico / Investigación cualitativa Idioma: Inglés Revista: Res. Biomed. Eng. (Online) Asunto de la revista: Engenharia Biom‚dica Año: 2015 Tipo del documento: Artículo / Documento de proyecto País de afiliación: Brasil Institución/País de afiliación: Universidade de São Paulo/BR

Similares

MEDLINE

...
LILACS

LIS


Texto completo: Disponible Índice: LILACS (Américas) Tipo de estudio: Estudio pronóstico / Investigación cualitativa Idioma: Inglés Revista: Res. Biomed. Eng. (Online) Asunto de la revista: Engenharia Biom‚dica Año: 2015 Tipo del documento: Artículo / Documento de proyecto País de afiliación: Brasil Institución/País de afiliación: Universidade de São Paulo/BR