Your browser doesn't support javascript.
loading
Preparation and characterization of stable Nanoliposomal formulation of fluoxetine as a potential adjuvant therapy for drug-resistant tumors
IJPR-Iranian Journal of Pharmaceutical Research. 2014; 13 (Supp.): 3-14
en Inglés | IMEMR | ID: emr-141086
ABSTRACT
Chemotherapy research highly prioritizes overcoming the multidrug resistance [MDR] in human tumors. Liposomal formulation of fluoxetine, as a fourth generation chemosensitizer, was constructed and characterized for percent entrapment, release profile, morphology, particle size, zeta potential and stability. Liposomes were prepared using different active loading techniques. The influence of different formulation variables such as loading methodology, type of main lipid, addition of PEGylated lipid and cholesterol percentage was evaluated to achieve required entrapment efficiency, in vitro release behavior and stability. The studied parameters had significant effect on physicochemical characteristics of the nanocarriers. High fluoxetine encapsulation efficiency [83% +/- 3%] and appropriate particle size [101 +/- 12 nm] and zeta potential [-9 +/- 2 mv] were achieved for PEGylation liposomes composed of DSPE-PEG, DSPC and cholesterol at respective molar ratio of 57025. An in vitro fluoxetine release of about 20% in 48 h was observed from optimum formulation. Atomic force microscopy [AFM] studies confirmed homogeneous distribution of particles and spherical shape with smooth surface. The optimum formulation was stable for 9 days when incubated at 37 [degree sign]C. The results of this study are very encouraging for application of the developed fluoxetine liposomal formulation in drug-resistant tumor models
Buscar en Google
Índice: IMEMR (Mediterraneo Oriental) Idioma: Inglés Revista: Iran. J. Pharm. Res. Año: 2014

Similares

MEDLINE

...
LILACS

LIS

Buscar en Google
Índice: IMEMR (Mediterraneo Oriental) Idioma: Inglés Revista: Iran. J. Pharm. Res. Año: 2014