Your browser doesn't support javascript.
loading
Green synthesis of silver nanoparticles: the reasons for and against Aspergillus parasiticus
Nanomedicine Journal. 2014; 1 (4): 267-275
en Inglés | IMEMR | ID: emr-171641
ABSTRACT
The enzymatic activity of fungi has recently inspired the scientists with re-explore the fungi as potential biofactories rather than the causing agents of humans and plants infections. In very recent years, fungi are considered as worthy, applicable and available candidates for synthesis of smaller gold, silver and other nano-sized particles. A standard strain of Aspergillus parasiticus was grown on a liquid medium containing mineral salt. The cell-free filtrate of the culture was then obtained and subjected to synthesize SNPs while expose with 1mM of AgNO[3]. Further characterization of synthesized SNPs was performed afterward. In addition, antifungal activity of synthesized SNPs was evaluated against a standard strain of Candida albicans. The reduction of Ag+ ions to metal nanoparticles was investigated virtually by tracing the color of the solution which turned into reddish-brown after 72 h. The UV-vis spectra demonstrated a broad peak centering at 400 nm which corresponds to the particle size much less than 70 nm. The results of TEM demonstrated that the particles were formed fairly uniform, spherical, and small in size with almost 90% in 5-30 nm range. The zeta potential of silver nanoparticles was negative and equal to 15.0 which meets the quality and suggested that there was not much aggression. Silver nanoparticles synthesized by A. parasiticus showed antifungal activity against yeast strain tested and exhibited MIC value of 4 microg/mL. The filamentous fungus, A. parasiticus has successfully demonstrated potential for extra cellular synthesis of fairly monodispersed, tiny silver nanoparticles
Asunto(s)
Buscar en Google
Índice: IMEMR (Mediterraneo Oriental) Asunto principal: Plata / Nanopartículas Idioma: Inglés Revista: Nanomedicne J. Año: 2014

Similares

MEDLINE

...
LILACS

LIS

Buscar en Google
Índice: IMEMR (Mediterraneo Oriental) Asunto principal: Plata / Nanopartículas Idioma: Inglés Revista: Nanomedicne J. Año: 2014