Person centered prediction of survival in population based screening program by an intelligent clinical decision support system
Gastroenterology and Hepatology from Bed to Bench. 2017; 10 (1): 60-65
en En
| IMEMR
| ID: emr-185422
Biblioteca responsable:
EMRO
Aim: To survey person centered survival rate in population based screening program by an intelligent clinical decision support system
Background: Colorectal cancer is the most common malignancy and major cause of morbidity and mortality throughout the world. Colorectal cancer is the sixth leading cause of cancer death in Iran. In this survey, we used cosine similarity as data mining technique and intelligent system for estimating survival of at risk groups in the screening plan
Methods: In the first step, we determined minimum data set [MDS]. MDS was approved by experts and reviewing literatures. In the second step, MDS were coded by python language and matched with cosine similarity formula. Finally, survival rate by percent was illustrated in the user interface of national intelligent system. The national intelligent system was designed in PyCharm environment
Results: Main data elements of intelligent system consist demographic information, age, referral type, risk group, recommendation and survival rate. Minimum data set related to survival comprise of clinical status, past medical history and socio-demographic information. Information of the covered population as a comprehensive database was connected to intelligent system and survival rate estimated for each patient. Mean range of survival of HNPCC patients and FAP patients were respectively 77.7% and 75.1%. Also, the mean range of the survival rate and other calculations have changed with the entry of new patients in the CRC registry by real-time
Conclusion: National intelligent system monitors the entire of risk group and reports survival rates by electronic guidelines and data mining technique and also operates according to the clinical process. This web base software has a critical role in the estimation survival rate in order to health care planning
Background: Colorectal cancer is the most common malignancy and major cause of morbidity and mortality throughout the world. Colorectal cancer is the sixth leading cause of cancer death in Iran. In this survey, we used cosine similarity as data mining technique and intelligent system for estimating survival of at risk groups in the screening plan
Methods: In the first step, we determined minimum data set [MDS]. MDS was approved by experts and reviewing literatures. In the second step, MDS were coded by python language and matched with cosine similarity formula. Finally, survival rate by percent was illustrated in the user interface of national intelligent system. The national intelligent system was designed in PyCharm environment
Results: Main data elements of intelligent system consist demographic information, age, referral type, risk group, recommendation and survival rate. Minimum data set related to survival comprise of clinical status, past medical history and socio-demographic information. Information of the covered population as a comprehensive database was connected to intelligent system and survival rate estimated for each patient. Mean range of survival of HNPCC patients and FAP patients were respectively 77.7% and 75.1%. Also, the mean range of the survival rate and other calculations have changed with the entry of new patients in the CRC registry by real-time
Conclusion: National intelligent system monitors the entire of risk group and reports survival rates by electronic guidelines and data mining technique and also operates according to the clinical process. This web base software has a critical role in the estimation survival rate in order to health care planning
Buscar en Google
Índice:
IMEMR
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Prognostic_studies
/
Qualitative_research
/
Screening_studies
Idioma:
En
Revista:
Gastroenterol. Hepatol. Bed Bench
Año:
2017