AJMB-Avicenna Journal of Medical Biotechnology. 2017; 9 (1): 2-7
en En
| IMEMR
| ID: emr-185805
Biblioteca responsable:
EMRO
Background: Related Multidrug Resistance [MDR] to efflux pumps is a significant problem in treating infections caused by Pseudomonas aeruginosa [P. aeruginosa]. Plant compounds have been identified as Pump Inhibitors [EPIs]. In the current study, the potential effect of Berberine and Palmatine as EPIs were investigated on efflux pump inhibition through focusing on different gene patterns in P. aeruginosa isolated from burn infections
Methods: All isolates were collected and identified using the standard biochemical tests. Antimicrobial sensitivity was performed based on disk agar diffusion method for 12 antibiotics. MIC-MBC tests were also performed based on the broth microdilution method to detect synergistic relationship between ciprofloxacin, Berberine and Palmatine. Detection of mexA, mexB, mexC, mexD, mexE, mexF and mexX was conducted by PCR assay. Fisher's Exact test and Logistic Regression were used as statistical tools
Results: A total of 60 P. aeruginosa isolates were collected. The highest and lowest levels of resistance were found to be respectively against clindamycin and tigecycline. Comparing the MIC with MBC distribution, it was found that Berberine and Palmatine lower the MIC-MBC level of ciprofloxacin. The PCR results indicated that the highest frequency is about MexAB-OprM operon. The statistical analysis among different gene patterns of efflux pumps showed that there were no significant relationships between the effectiveness of Berberine and Palmatine [p>0.05]
Conclusion: It can be speculated that Berberine and Palmatine both act as EPIs and can be used as auxiliary treatments with the purpose of increasing the effect of available antibiotics as well as decreasing the emergence of MDR bacteria. The efficiency of these combinations should be studied further under in vivo conditions to have a more comprehensive conclusion regarding this issue
Methods: All isolates were collected and identified using the standard biochemical tests. Antimicrobial sensitivity was performed based on disk agar diffusion method for 12 antibiotics. MIC-MBC tests were also performed based on the broth microdilution method to detect synergistic relationship between ciprofloxacin, Berberine and Palmatine. Detection of mexA, mexB, mexC, mexD, mexE, mexF and mexX was conducted by PCR assay. Fisher's Exact test and Logistic Regression were used as statistical tools
Results: A total of 60 P. aeruginosa isolates were collected. The highest and lowest levels of resistance were found to be respectively against clindamycin and tigecycline. Comparing the MIC with MBC distribution, it was found that Berberine and Palmatine lower the MIC-MBC level of ciprofloxacin. The PCR results indicated that the highest frequency is about MexAB-OprM operon. The statistical analysis among different gene patterns of efflux pumps showed that there were no significant relationships between the effectiveness of Berberine and Palmatine [p>0.05]
Conclusion: It can be speculated that Berberine and Palmatine both act as EPIs and can be used as auxiliary treatments with the purpose of increasing the effect of available antibiotics as well as decreasing the emergence of MDR bacteria. The efficiency of these combinations should be studied further under in vivo conditions to have a more comprehensive conclusion regarding this issue
Buscar en Google
Índice:
IMEMR
Asunto principal:
Pseudomonas aeruginosa
/
Berberina
/
Alcaloides de Berberina
/
Extractos Vegetales
/
Genes MDR
/
Irán
País/Región como asunto:
Asia
Idioma:
En
Revista:
Avicenna J. Med. Biotechnol.
Año:
2017