Your browser doesn't support javascript.
loading
Wave onset in central gray matter - its intrinsic optical signal and phase transitions in extracellular polymers
Fernandes-de-Lima, Vera M; Kogler, Jo×o E; Bennaton, Jocelyn; Hanke, Wolfgang.
  • Fernandes-de-Lima, Vera M; Universidade de Säo Paulo. Escola Politécnica. Laboratory of Integrated Systems. Säo Paulo. BR
  • Kogler, Jo×o E; Universidade de Säo Paulo. Escola Politécnica. Laboratory of Integrated Systems. Säo Paulo. BR
  • Bennaton, Jocelyn; Universidade de Säo Paulo. Escola Politécnica. Department of Electronic. Säo Paulo. BR
  • Hanke, Wolfgang; Hohenheim University. Membrane Biophysics Division. DE
An. acad. bras. ciênc ; 73(3): 351-364, Sept. 2001. ilus, graf
Artículo en Inglés | LILACS | ID: lil-295864
ABSTRACT
The brain is an excitable media in which excitation waves propagate at several scales of time and space. ''One-dimensional'' action potentials (millisecond scale) along the axon membrane, and spreading depression waves (seconds to minutes) at the three dimensions of the gray matter neuropil (complex of interacting membranes) are examples of excitation waves. In the retina, excitation waves have a prominent intrinsic optical signal (IOS). This optical signal is created by light scatter and has different components at the red and blue end of the spectrum. We could observe the wave onset in the retina, and measure the optical changes at the critical transition from quiescence to propagating wave. The results demonstrated the presence of fluctuations preceding propagation and suggested a phase transition. We have interpreted these results based on an extrapolation from Tasaki's experiments with action potentials and volume phase transitions of polymers. Thus, the scatter of red light appeared to be a volume phase transition in the extracellular matrix that was caused by the interactions between the cellular membrane cell coat and the extracellular sugar and protein complexes. If this hypothesis were correct, then forcing extracellular current flow should create a similar signal in another tissue, provided that this tissue was also transparent to light and with a similarly narrow extracellular space. This control tissue exists and it is the crystalline lens. We performed the experiments and confirmed the optical changes. Phase transitions in the extracellular polymers could be an important part of the long-range correlations found during wave propagation in central nervous tissue
Asunto(s)
Texto completo: Disponible Índice: LILACS (Américas) Asunto principal: Retina / Depresión de Propagación Cortical / Técnicas In Vitro / Sustancia Gris Periacueductal / Matriz Extracelular / Fototransducción Límite: Animales Idioma: Inglés Revista: An. acad. bras. ciênc Asunto de la revista: Ciencia Año: 2001 Tipo del documento: Artículo País de afiliación: Brasil / Alemania Institución/País de afiliación: Hohenheim University/DE / Universidade de Säo Paulo/BR

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: LILACS (Américas) Asunto principal: Retina / Depresión de Propagación Cortical / Técnicas In Vitro / Sustancia Gris Periacueductal / Matriz Extracelular / Fototransducción Límite: Animales Idioma: Inglés Revista: An. acad. bras. ciênc Asunto de la revista: Ciencia Año: 2001 Tipo del documento: Artículo País de afiliación: Brasil / Alemania Institución/País de afiliación: Hohenheim University/DE / Universidade de Säo Paulo/BR