Your browser doesn't support javascript.
loading
Lung morphometry, collagen and elastin content: changes after hyperoxic exposure in preterm rabbits
Mascaretti, Renata Suman; Mataloun, Marta Maria Galli Bozzo; Dolhnikoff, Marisa; Rebello, Celso Moura.
Afiliación
  • Mascaretti, Renata Suman; Universidade de São Paulo. Faculdade de Medicina. Experimental Research Unit. Pediatrics Department. São Paulo. BR
  • Mataloun, Marta Maria Galli Bozzo; Universidade de São Paulo. Faculdade de Medicina. Experimental Research Unit. Pediatrics Department. São Paulo. BR
  • Dolhnikoff, Marisa; Universidade de São Paulo. Faculdade de Medicina. Pathology Department. São Paulo. BR
  • Rebello, Celso Moura; Universidade de São Paulo. Faculdade de Medicina. Experimental Research Unit. Pediatrics Department. São Paulo. BR
Clinics ; 64(11): 1099-1104, Nov. 2009. ilus, tab
Article en En | LILACS | ID: lil-532537
Biblioteca responsable: BR1.1
ABSTRACT

INTRODUCTION:

Elastic and collagen fiber deposition increases throughout normal lung development, and this fiber network significantly changes when development of the lung is disturbed. In preterm rats and lambs, prolonged hyperoxic exposure is associated with impaired alveolization and causes significant changes in the deposition and structure of elastic fibers.

OBJECTIVES:

To evaluate the effects of hyperoxic exposure on elastic and collagen fiber deposition in the lung interstitial matrix and in alveolarization in preterm rabbits.

METHODS:

After c-section, 28-day preterm New-Zealand-White rabbits were randomized into 2 study groups, according to the oxygen exposure, namely Room air (oxygen = 21 percent) or Oxygen (oxygen > 95 percent). The animals were killed on day 11 and their lungs were analyzed for the alveolar size (Lm), the internal surface area (ISA), the alveoli number, and the density and distribution of collagen and elastic fibers.

RESULTS:

An increase in the Lm and a decrease in the alveoli number were observed among rabbits that were exposed to hyperoxia with no differences regarding the ISA. No difference in the density of elastic fibers was observed after oxygen exposure, however there were fewer collagen fibers and an evident disorganization of fiber deposition.

DISCUSSION:

This model reproduces anatomo-pathological injuries representing the arrest of normal alveolar development and lung architecture disorganization by just a prolonged exposition to oxygen.

CONCLUSIONS:

In the preterm rabbit, prolonged oxygen exposure impaired alveolization and also lowered the proportion of collagen fibers, with an evident fiber network disorganization.
Asunto(s)
Palabras clave
Texto completo: 1 Índice: LILACS Asunto principal: Oxígeno / Colágeno / Elastina / Pulmón Límite: Animals Idioma: En Revista: Clinics Asunto de la revista: MEDICINA Año: 2009 Tipo del documento: Article
Texto completo: 1 Índice: LILACS Asunto principal: Oxígeno / Colágeno / Elastina / Pulmón Límite: Animals Idioma: En Revista: Clinics Asunto de la revista: MEDICINA Año: 2009 Tipo del documento: Article