Your browser doesn't support javascript.
loading
Evaluation of short-term effects on 3D printing patient-matched artificial vertebral body in clinical research and application / 中华骨科杂志
Chinese Journal of Orthopaedics ; (12): 354-361, 2024.
Article en Zh | WPRIM | ID: wpr-1027728
Biblioteca responsable: WPRO
ABSTRACT
Objective:To evaluate the short-term efficacy and safety of 3D printing patient-matched artificial vertebral body in clinical research and application.Methods:A total of 12 patients with spinal tumors were enrolled 7 males (58.33%) and 5 females (41.67%), aged from 18 to 65 years old in The First Affiliated Hospital of Air Force military Medical University (hereinafter referred to as Xijing Hospital) and Peking University people's Hospital from September 2021 to July 2022. The spinal vertebra defect were restored by using 3D printing patient-matched artificial vertebral body after tumor resection. All patients who accepted TES and 3D printing patient-matched artificial vertebral body implantation were included according to the inclusion and exclusion criteria. The bone interface fusion was evaluated by the imaging fusion criteria of Brantigan and Steffee at 3 and 6 months after operation, the curative effect was evaluated by comparing Japanese Orthopaedic Association (JOA) score at 3 and 6 months after operation, visual analogue scale (VAS) 3 months after operation and intervertebral height at 3 and 6 months after operation with those before operation, and the safety was evaluated by adverse event recording.Results:All 12 patients completed the operation successfully, and the operation sites were thoracic vertebrae in 6 cases (50%), thoracolumbar in 3 cases (25%) and lumbar vertebrae in 3 cases (25%). All patients were followed up. The mean follow-up time was 23.92±3.23 months (range, 19-29 months). No tumor recurrence or metastasis was observed during this period. All patients were followed up at 15 days, 3 months and 6 months after operation. During the 6-month follow-up, X ray results showed that interface of bone and the vertebral body were fused in all of the 12 patients, and the effective rate of fusion was 100%. The 95% confidence interval is calculated to be (75.6%-100%). Six months after operation, the improvement rate of JOA score was excellent in 10 cases, good in 1 case, poor in 1 case, and the excellent and good rate was 91.66%. The preoperative VAS score was 4.08 ±2.47, and during the 3-month follow-up, the VAS score was improved to 1.83 ±1.59. Compared with the preoperative VAS score, the difference was statistically significant ( t=2.635, P=0.023). The intervertebral height before operation, 15 days after operation, 3 months after operation and 6 months after operation were 32.75 (25.94, 68.20), 41.09 (30.55, 70.20), 40.70 (30.23, 67.83) and 40.74 (30.23, 67.08), respectively, and there was no statistically significant difference (χ 2=0.768, P=0.857). No implant-related adverse events occurred after operation. Conclusion:The 3D printing patient-matched artificial vertebral body used in this study has satisfactory short-term efficacy and safety in the reconstruction of spinal stability after spinal tumor resection.
Palabras clave
Texto completo: 1 Índice: WPRIM Idioma: Zh Revista: Chinese Journal of Orthopaedics Año: 2024 Tipo del documento: Article
Texto completo: 1 Índice: WPRIM Idioma: Zh Revista: Chinese Journal of Orthopaedics Año: 2024 Tipo del documento: Article