alpha-Asarone Ameliorates Memory Deficit in Lipopolysaccharide-Treated Mice via Suppression of Pro-Inflammatory Cytokines and Microglial Activation
Biomolecules & Therapeutics
; : 17-26, 2014.
Article
en En
| WPRIM
| ID: wpr-138519
Biblioteca responsable:
WPRO
ABSTRACT
alpha-Asarone exhibits a number of pharmacological actions including neuroprotective, anti-oxidative, anticonvulsive, and cognitive enhancing action. The present study investigated the effects of alpha-asarone on pro-inflammatory cytokines mRNA, microglial activation, and neuronal damage in the hippocampus and on learning and memory deficits in systemic lipopolysaccharide (LPS)-treated C57BL/6 mice. Varying doses of alpha-asarone was orally administered (7.5, 15, or 30 mg/kg) once a day for 3 days before the LPS (3 mg/kg) injection. alpha-Asarone significantly reduced TNF-alpha and IL-1beta mRNA at 4 and 24 hours after the LPS injection at dose of 30 mg/kg. At 24 hours after the LPS injection, the loss of CA1 neurons, the increase of TUNEL-labeled cells, and the up-regulation of BACE1 expression in the hippocampus were attenuated by 30 mg/kg of alpha-asarone treatment. alpha-Asarone significantly reduced Iba1 protein expression in the hippocampal tissue at a dose of 30 mg/kg. alpha-Asarone did not reduce the number of Iba1-expressing microglia on immunohistochemistry but the average cell size and percentage areas of Iba1-expressing microglia in the hippocampus were significantly decreased by 30 mg/kg of alpha-asarone treatment. In the Morris water maze test, alpha-asarone significantly prolonged the swimming time spent in the target and peri-target zones. alpha-Asarone also significantly increased the number of target heading and memory score in the Morris water maze. The results suggest that inhibition of pro-inflammatory cytokines and microglial activation in the hippocampus by alpha-asarone may be one of the mechanisms for the alpha-asarone-mediated ameliorating effect on memory deficits.
Palabras clave
Texto completo:
1
Índice:
WPRIM
Asunto principal:
Natación
/
ARN Mensajero
/
Inmunohistoquímica
/
Regulación hacia Arriba
/
Citocinas
/
Factor de Necrosis Tumoral alfa
/
Microglía
/
Aprendizaje por Laberinto
/
Tamaño de la Célula
/
Cabeza
Límite:
Animals
Idioma:
En
Revista:
Biomolecules & Therapeutics
Año:
2014
Tipo del documento:
Article