Your browser doesn't support javascript.
loading
Beneficial effect of diosgenin as a stimulator of NGF on the brain with neuronal damage induced by Aβ-42 accumulation and neurotoxicant injection / 한국실험동물학회지
Laboratory Animal Research ; : 105-115, 2016.
Artículo en Inglés | WPRIM | ID: wpr-169023
ABSTRACT
To investigate the beneficial effects of diosgenin (DG) on the multiple types of brain damage induced by Aβ-42 peptides and neurotoxicants, alterations in the specific aspects of brain functions were measured in trimethyltin (TMT)-injected transgenic 2576 (TG) mice that had been pretreated with DG for 21 days. Multiple types of damage were successfully induced by Aβ-42 accumulation and TMT injection into the brains of TG mice. However, DG treatment significantly reduced the number of Aβ-stained plaques and dead cells in the granule cells layer of the dentate gyrus. Significant suppression of acetylcholinesterase (AChE) activity and Bax/Bcl-2 expression was also observed in the DG treated TG mice (TG+DG group) when compared with those of the vehicle (VC) treated TG mice (TG+VC group). Additionally, the concentration of nerve growth factor (NGF) was dramatically enhanced in TG+DG group, although it was lower in the TG+VC group than the non-transgenic (nTG) group. Furthermore, the decreased phosphorylation of downstream members in the TrkA high affinity receptor signaling pathway in the TG+VC group was significantly recovered in the TG+DG group. A similar pattern was observed in p75NTR expression and JNK phosphorylation in the NGF low affinity receptor signaling pathway. Moreover, superoxide dismutase (SOD) activity was enhanced in the TG+DG group, while the level of malondialdehyde (MDA), a marker of lipid peroxidation, was lower in the TG+DG group than the TG+VC group. These results suggest that DG could exert a wide range of beneficial activities for multiple types of brain damage through stimulation of NGF biosynthesis.
Asunto(s)

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Asunto principal: Péptidos / Fosforilación / Acetilcolinesterasa / Superóxido Dismutasa / Encéfalo / Peroxidación de Lípido / Giro Dentado / Enfermedades Neurodegenerativas / Factor de Crecimiento Nervioso / Diosgenina Límite: Animales Idioma: Inglés Revista: Laboratory Animal Research Año: 2016 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Asunto principal: Péptidos / Fosforilación / Acetilcolinesterasa / Superóxido Dismutasa / Encéfalo / Peroxidación de Lípido / Giro Dentado / Enfermedades Neurodegenerativas / Factor de Crecimiento Nervioso / Diosgenina Límite: Animales Idioma: Inglés Revista: Laboratory Animal Research Año: 2016 Tipo del documento: Artículo