Dual Component Analysis for In Vivo T₂* Decay of Hyperpolarized ¹³C Metabolites
Investigative Magnetic Resonance Imaging
; : 1-8, 2017.
Article
en En
| WPRIM
| ID: wpr-225907
Biblioteca responsable:
WPRO
ABSTRACT
PURPOSE: To investigate the exchange and redistribution of hyperpolarized ¹³C metabolites between different pools by temporally analyzing the relative fraction of dual T₂* components of hyperpolarized ¹³C metabolites. MATERIALS AND METHODS: A dual exponential decay analysis of T₂* is performed for [1-¹³C] pyruvate and [1-¹³C] lactate using nonspatially resolved dynamic ¹³C MR spectroscopy from mice brains with tumors (n = 3) and without (n = 4) tumors. The values of shorter and longer T₂* components are explored when fitted from averaged spectrum and temporal variations of their fractions. RESULTS: The T₂* values were not significantly different between the tumor and control groups, but the fraction of longer T₂* [1-¹³C] lactate components was more than 10% in the tumor group over that of the controls (P < 0.1). The fraction of shorter T₂* components of [1-¹³C] pyruvate showed an increasing tendency while that of the [1-¹³C] lactate was decreasing over time. The slopes of the changing fraction were steeper for the tumor group than the controls, especially for lactate (P < 0.01). In both pyruvate and lactate, the fraction of the shorter T₂* component was always greater than the longer T₂* component over time. CONCLUSIONS: The exchange and redistribution of pyruvate and lactate between different pools was investigated by dual component analysis of the free induction decay signal from hyperpolarized ¹³C experiments. Tumor and control groups showed differences in their fractions rather than the values of longer and shorter T₂* components. Fraction changing dynamics may provide an aspect for extravasation and membrane transport of pyruvate and lactate, and will be useful to determine the appropriate time window for acquisition of hyperpolarized ¹³C images.
Palabras clave
Texto completo:
1
Índice:
WPRIM
Asunto principal:
Encéfalo
/
Espectroscopía de Resonancia Magnética
/
Ácido Láctico
/
Ácido Pirúvico
/
Membranas
Límite:
Animals
Idioma:
En
Revista:
Investigative Magnetic Resonance Imaging
Año:
2017
Tipo del documento:
Article