Effects of Sinopodophyllum hexundrum on apoptosis in K562 cells / 南方医科大学学报
Journal of Southern Medical University
; (12): 226-231, 2016.
Article
en Zh
| WPRIM
| ID: wpr-273783
Biblioteca responsable:
WPRO
ABSTRACT
<p><b>OBJECTIVE</b>To investigate the effects of Sinopodophyllum hexundrum on apoptosis in K562 cells.</p><p><b>METHODS</b>K562 cells were treated with Sinopodophyllum hexundrum at different concentrations and for different lengths of time to determine the optimal conditions of SinoPodophyllum hexandrum treatment for K562 cells using CCK8 assay. The cell apoptotic rate was detected by flow cytometry, and the cell morphology and nuclear morphology of K562 cells were observed with Wright staining and DPAI staining, respectively. The protein expressions of BCR/ABL, p-BCR/ABL, STAT5, p-STAT5 and the apoptosis-related proteins PARP, caspase-3 and cleaved-caspase-3 were determined with Western blotting.</p><p><b>RESULTS</b>The cell proliferation was inhibited in a concentration-and time-dependent manner by 1, 2, and 3 µg/mL Sinopodophyllum hexundrum. The treatment was optimal with a Sinopodophyllum hexundrum concentration of 2 µg/mL a treatment time of 48 h, and the cell apoptotic rate increased in a time-dependent manner and significantly increased at 48 h (P<0.001). The expression of apoptosis-related proteins PARP, caspase-3 and cleaved-caspase-3 were also activated in a time-dependent manner. The cells showed typical apoptotic changes after treatment with 2 µg/mL Sinopodophyllum hexundrum for 48 h with significantly reduced expressions of BCR/ABL, p-BCR/ABL, STAT5, AND p-STAT5.</p><p><b>CONCLUSION</b>Sinopodophyllum hexundrum promotes K562 cell apoptosis possibly by inhibiting BCR/ABL-STAT5 survival signal pathways and activating the mitochondrion-associated apoptotic pathways.</p>
Texto completo:
1
Índice:
WPRIM
Asunto principal:
Farmacología
/
Medicamentos Herbarios Chinos
/
Transducción de Señal
/
Proteínas de Fusión bcr-abl
/
Apoptosis
/
Células K562
/
Proliferación Celular
/
Factor de Transcripción STAT5
/
Caspasa 3
/
Metabolismo
Límite:
Humans
Idioma:
Zh
Revista:
Journal of Southern Medical University
Año:
2016
Tipo del documento:
Article