Your browser doesn't support javascript.
loading
NADPH oxidase activation contributes to native low-density lipoprotein-induced proliferation of human aortic smooth muscle cells
Experimental & Molecular Medicine ; : e168-2015.
Artículo en Inglés | WPRIM | ID: wpr-30206
ABSTRACT
Elevated plasma concentration of native low-density lipoprotein (nLDL) is associated with vascular smooth muscle cell (VSMC) activation and cardiovascular disease. We investigated the mechanisms of superoxide generation and its contribution to pathophysiological cell proliferation in response to nLDL stimulation. Lucigenin-induced chemiluminescence was used to measure nLDL-induced superoxide production in human aortic smooth muscle cells (hAoSMCs). Superoxide production was increased by nicotinamide adenine dinucleotide phosphate (NADPH) and decreased by NADPH oxidase inhibitors in nLDL-stimulated hAoSMC and hAoSMC homogenates, as well as in prepared membrane fractions. Extracellular signal-regulated kinase 1/2 (Erk1/2), protein kinase C-theta (PKCtheta) and protein kinase C-beta (PKCbeta) were phosphorylated and maximally activated within 3 min of nLDL stimulation. Phosphorylated Erk1/2 mitogen-activated protein kinase, PKCtheta and PKCbeta stimulated interactions between p47phox and p22phox; these interactions were prevented by MEK and PKC inhibitors (PD98059 and calphostin C, respectively). These inhibitors decreased nLDL-dependent superoxide production and blocked translocation of p47phox to the membrane, as shown by epifluorescence imaging and cellular fractionation experiments. Proliferation assays showed that a small interfering RNA against p47phox, as well as superoxide scavenger and NADPH oxidase inhibitors, blocked nLDL-induced hAoSMC proliferation. The nLDL stimulation in deendothelialized aortic rings from C57BL/6J mice increased dihydroethidine fluorescence and induced p47phox translocation that was blocked by PD98059 or calphostin C. Isolated aortic SMCs from p47phox-/- mice (mAoSMCs) did not respond to nLDL stimulation. Furthermore, NADPH oxidase 1 (Nox1) was responsible for superoxide generation and cell proliferation in nLDL-stimulated hAoSMCs. These data demonstrated that NADPH oxidase activation contributed to cell proliferation in nLDL-stimulated hAoSMCs.
Asunto(s)
Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Asunto principal: Aorta / Fosforilación / Proteína Quinasa C / Transducción de Señal / Línea Celular / Células Cultivadas / Superóxidos / NADPH Oxidasas / Proteínas Quinasas Activadas por Mitógenos / Miocitos del Músculo Liso Límite: Animales / Humanos Idioma: Inglés Revista: Experimental & Molecular Medicine Año: 2015 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Asunto principal: Aorta / Fosforilación / Proteína Quinasa C / Transducción de Señal / Línea Celular / Células Cultivadas / Superóxidos / NADPH Oxidasas / Proteínas Quinasas Activadas por Mitógenos / Miocitos del Músculo Liso Límite: Animales / Humanos Idioma: Inglés Revista: Experimental & Molecular Medicine Año: 2015 Tipo del documento: Artículo