The recognition methodology study of epileptic EEGs based on support vector machine / 生物医学工程学杂志
J. biomed. eng
; Sheng wu yi xue gong cheng xue za zhi;(6): 919-924, 2013.
Article
en Zh
| WPRIM
| ID: wpr-352140
Biblioteca responsable:
WPRO
ABSTRACT
EEG recordings contain valuable physiological and pathological information in the process of seizure. The dynamic changes of brain electrical activity provide foundation and possibility for research and development of automatic detection system about epilepsy. In this paper, a nonlinear dynamic method is presented for analysis of the nonlinear dynamic characteristics of EEGs and delta, theta, alpha, and beta sub-bands of EEGs based on wavelet transform. The extracted feature is used as the input vector of a support vector machine (SVM) to construct classifiers. The results showed that the classification accuracy of SVM classifier based on nonlinear dynamic characteristics to classify the EEG into interictal EEGs and ictal EEGs reached 90% or higher. The support vector machine has good generalization in detecting the epilepsy EEG signals as a nonlinear classifier.
Texto completo:
1
Índice:
WPRIM
Asunto principal:
Algoritmos
/
Procesamiento de Señales Asistido por Computador
/
Artefactos
/
Dinámicas no Lineales
/
Diagnóstico
/
Electroencefalografía
/
Epilepsia
/
Máquina de Vectores de Soporte
/
Métodos
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
Zh
Revista:
J. biomed. eng
/
Sheng wu yi xue gong cheng xue za zhi
Año:
2013
Tipo del documento:
Article