Your browser doesn't support javascript.
loading
Charaterizing cytotoxicity of nitrogen mustard HN-3 based on cellular high content analysis / 中国药理学与毒理学杂志
Chinese Journal of Pharmacology and Toxicology ; (6): 742-753, 2017.
Artículo en Chino | WPRIM | ID: wpr-667745
ABSTRACT
OBJECTIVE To study the cytotoxic characteristics of nitrogen mustard HN-3 in different cell. METHODS Human epidermal keratinocytes-fetal (HEKf), human dermal fibroblasts-adult (HDFa) and human lung fibroblasts (HLF) cell lines were treated with HN-3100, 300 and 450μmol·L-1 for 0.5, 2, 4, 6, 12, 24 and 48 h, respectively. Multi-parameter analysis technology based on cell imaging was used to examine the effects of HN-3 on cell survival, cell cycle arrest, apoptosis, autophagy and oxidative stress, along with parameters concerning nucleus, cytoskeleton (actin and tubulin), lysosome, nuclear membrane permeability (NMP), mitochondrial membrane potential (MMP) and phosphohistone H 2AX (pH2AX). RESULTS HN-3 caused irreversible cellular damage by significantly decreasing the number of HEKf, HDFa and HLF cells in a time-dependent manner (P<0.01). Before the cell number was reduced robustly, the content of reactive oxygen species and pH2AX significantly increased, but the glutathione content decreased after cells were exposed to HN-3 for 0.5 h (P<0.01). In addition, the content of lyso-some was reduced in HEKf cells at 0.5 h, but increased in HDFa and HLF cells at 0.5 and 2 h respec-tively, accompanied by the increase in microtubule-associated protein 1 light chain 3B (LC3B) puncta.With the significant reduction of the cell number in HEKf cell line, the nuclear intensity increased, nuclear area decreased, the intensity and area of F-actin and α-tubulin decreased, MMP decreased (P<0.01) and lysosomal intensity increased. But the effects of HN-3 on HDFa and HLF cell lines were quite different. The nuclear area increased, the intensity and area of F-actin and a-tubulin increased, MMP increased (P<0.01) and the intensity of lysosome increased. In HLF cells, there was an increase in LC3B puncta (P<0.01). In all the three cell lines, NMP and manganese superoxide dismutase content were increased, and cell cycle arrested at G2 phase. HN-3 Induced early apoptosis in HDFa cells but late apoptosis in HEKf cells. CONCLUSION HN-3 causes DNA damage, oxidative stress and lysosome damage at an early stage, whereas at the late stage, the imbalance of MMP, increase in NMP, and G2 phage arrest are the major cytotoxic effects. Moreover, HN-3 specifically induces nuclear condensation, cytoskeleton protein aggregation and apoptosis in HEKf cell. HN-3 Induces nuclear swelling, and loose cytoskeleton in HDFa cells and HLF cells, eventually inducing early apoptosis in HDFa cells and autophagic death in HLF cells.

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Chinese Journal of Pharmacology and Toxicology Año: 2017 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Chinese Journal of Pharmacology and Toxicology Año: 2017 Tipo del documento: Artículo