Your browser doesn't support javascript.
loading
A new bioinformatics approach for prediction of potential tumor neoantigens based on the cancer genome atlas dataset / 生物工程学报
Chinese Journal of Biotechnology ; (12): 1295-1306, 2019.
Artículo en Chino | WPRIM | ID: wpr-771799
ABSTRACT
Tumor-specific gene mutations might generate suitable neoepitopes for cancer immunotherapy that are highly immunogenic and absent in normal tissues. The high heterogeneity of the tumor genome poses a big challenge for precision cancer immunotherapy. Mutations characteristic of each tumor can help to distinguish it from other tumors. Based on these mutations' characteristic, it is possible to develop immunotherapeutic strategies for specific tumors. In this study, a tumor neoantigen prediction scheme was proposed, in which both the intracellular antigen presentation process and the ability to bind with extracellular MHC molecule were taken into consideration. The overall design is meritorious and may help reduce the cost for validation experiments compared with conventional methods. This strategy was tested with several cancer genome datasets in the TCGA database, and a number of potential tumor neoantigens were predicted for each dataset. These predicted neoantigens showed tumor type specificity and were found in 20% to 70% of cancer patients. This scheme might prove useful clinically in future.
Asunto(s)

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Asunto principal: Genoma Humano / Biología Computacional / Inmunoterapia / Mutación / Antígenos de Neoplasias / Neoplasias Tipo de estudio: Estudio pronóstico Límite: Humanos Idioma: Chino Revista: Chinese Journal of Biotechnology Año: 2019 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Asunto principal: Genoma Humano / Biología Computacional / Inmunoterapia / Mutación / Antígenos de Neoplasias / Neoplasias Tipo de estudio: Estudio pronóstico Límite: Humanos Idioma: Chino Revista: Chinese Journal of Biotechnology Año: 2019 Tipo del documento: Artículo