Your browser doesn't support javascript.
loading
Expression of Mammalian BM88/CEND1 in Drosophila Affects Nervous System Development by Interfering with Precursor Cell Formation / 神经科学通报·英文版
Neuroscience Bulletin ; (6): 979-995, 2019.
Artículo en Inglés | WPRIM | ID: wpr-776456
ABSTRACT
We used Drosophila melanogaster as an experimental model to express mouse and pig BM88/CEND1 (cell cycle exit and neuronal differentiation 1) in order to investigate its potential functional effects on Drosophila neurogenesis. BM88/CEND1 is a neuron-specific protein whose function is implicated in triggering cells to exit from the cell cycle and differentiate towards a neuronal phenotype. Transgenic flies expressing either mouse or pig BM88/CEND1 in the nervous system had severe neuronal phenotypes with variable expressivity at various stages of embryonic development. In early embryonic stage 10, BM88/CEND1 expression led to an increase in the neural-specific antigenicity of neuroectoderm at the expense of precursor cells [neuroblasts (Nbs) and ganglion mother cells (GMCs)] including the defective formation and differentiation of the MP2 precursors, whereas at later stages (12-15), protein accumulation induced gross morphological defects primarily in the CNS accompanied by a reduction of Nb and GMC markers. Furthermore, the neuronal precursor cells of embryos expressing BM88/CEND1 failed to carry out proper cell-cycle progression as revealed by the disorganized expression patterns of specific cell-cycle markers. BM88/CEND1 accumulation in the Drosophila eye affected normal eye disc development by disrupting the ommatidia. Finally, we demonstrated that expression of BM88/CEND1 modified/reduced the levels of activated MAP kinase indicating a functional effect of BM88/CEND1 on the MAPK signaling pathway. Our findings suggest that the expression of mammalian BM88/CEND1 in Drosophila exerts specific functional effects associated with neuronal precursor cell formation during embryonic neurogenesis and proper eye disc development. This study also validates the use of Drosophila as a powerful model system in which to investigate gene function and the underlying molecular mechanisms.

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Tipo de estudio: Estudio pronóstico Idioma: Inglés Revista: Neuroscience Bulletin Año: 2019 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Tipo de estudio: Estudio pronóstico Idioma: Inglés Revista: Neuroscience Bulletin Año: 2019 Tipo del documento: Artículo