Your browser doesn't support javascript.
loading
Role of rate-limiting step of mevalonate pathway in improving lycopene production in Escherichia coli / 生物工程学报
Chinese Journal of Biotechnology ; (12): 77-89, 2020.
Artículo en Chino | WPRIM | ID: wpr-787686
ABSTRACT
The introduction of the mevalonate pathway (MVA pathway) in recombinant Escherichia coli can improve the synthesis of terpenoids. But the imbalance expression of MVA pathway genes and accumulation of intermediates inhibit cell growth and terpenoids production. In this study, each gene of MVA pathway and key genes of lycopene synthesis pathway were cloned in plasmid to express in the recombinant E. coli LYC103 with optimizing the expression of the key genes of the 2-methyl-D-erythritol-4-phosphate pathway (MEP pathway), chromosome recombinant MVA pathway and the lycopene synthesis pathway. The results showed that the overexpression of ispA, crtE, mvaK1, idi and mvaD genes did not affect the cell growth, while lycopene production increased by 13.5%, 16.5%, 17.95%, 33.7% and 61.1% respectively, indicating that these genes may be the rate-limiting steps for the synthesis of lycopene. mvaK1, mvaK2, mvaD of MVA pathway were the rate-limiting steps and were in an operon. The mvaK1, mvaK2, mvaD operon was regulated by mRS (mRNA stabilizing region) library in front of mvaK1, obtaining strain LYC104. Lycopene yield of LYC104 was doubled and cell growth was increased by 32% compared with the control strain LYC103. CRISPR-cas9 technology was used to integrate idi into chromosome at lacZ site to obtain LYC105 strain. Cell growth of LYC105 was increased by 147% and lycopene yield was increased by 2.28 times compared with that of LYC103. In this study, each gene of lycopene synthesis pathway was expressed in plasmid to certify the rate-limiting gene based on the complete MVA pathway on the chromosome. Then the rate-limiting gene was integrated in chromosome with homologous recombination to release the rate-limiting, which providing a new strategy for the construction of high-yield strains for metabolic engineering.

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Chinese Journal of Biotechnology Año: 2020 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Chinese Journal of Biotechnology Año: 2020 Tipo del documento: Artículo