Your browser doesn't support javascript.
loading
Application and significance of nanofibrous macroporous scaffold preparation technology for bone tissue engineering / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 4437-4444, 2020.
Artículo en Chino | WPRIM | ID: wpr-847291
ABSTRACT

BACKGROUND:

Bionic porous scaffolds used in bone tissue engineering requires extracellular matrix-like nanofibrous and connected macroporous structure to effectively support cell implantation, adhesion, proliferation and other behaviors, and promote tissue regeneration.

OBJECTIVE:

To summarize the research progress in nanorfibrous macroporous scaffold preparation technology for tissue engineering based on the latest relevant research trends.

METHODS:

The first author searched Web of Science, CNKI and Baidu academic databases to retrieve papers published from 2000 to 2019 with the search terms “bone tissue engineering, nanofibrous, macroporous, scaffolds” in English and Chinese, respectively. Finally, 58 articles were included in result analysis. RESULTS AND

CONCLUSION:

The scaffolds with nanofibrous structures are fabricated using three strategies, including electrospinning, thermally induced phase separation, and self-assembly process. However, bone scaffold fabricated by a single strategy failed to provide interconnected macropores to simulate the microenvironment in the body, which was necessary for cell migration, growth, differentiation, proliferation, and tissue and organ regeneration. Therefore, it is now of great practical and scientific significance to develop macroporous nanofibrous scaffold using a combination of several strategies. Three-dimensional printing technique can provide precise structure and enables the customization of the internal structure and external shape of the scaffold, which promotes the development of bone tissue engineering technique.

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Chinese Journal of Tissue Engineering Research Año: 2020 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Chinese Journal of Tissue Engineering Research Año: 2020 Tipo del documento: Artículo