Your browser doesn't support javascript.
loading
Platelet-rich plasma combined with core decompression regulates oxidative stress in a rabbit model of steroid-induced femoral head necrosis / 中国组织工程研究
Chinese Journal of Tissue Engineering Research ; (53): 1677-1682, 2020.
Artículo en Chino | WPRIM | ID: wpr-847936
ABSTRACT

BACKGROUND:

Oxidative stress plays an important role in femoral head necrosis. Platelet-rich plasma (PRP) contains growth factors that can accelerate fracture healing. PRP combined with core decompression can promote recovery from non-traumatic femoral head necrosis.

OBJECTIVE:

To investigate whether PRP combined with core decompression can inhibit oxidative stress in steroid-induced avascular necrosis of the femoral head model via Keap1/Nrf2/HO-1 signaling pathway.

METHODS:

Forty New Zealand rabbits were randomly divided into normal group, model group, control group and PRP group, with 10 rabbits in each group. In the model and PRP groups, a model of steroid-induced femoral head necrosis was established in a sterile environment. At 4 weeks after operation, the rabbits in the PRP group were injected with 0.4 mL of 3% PRP after core decompression. The control group received core decompression treatment, and the control and model groups were raised normally. After 14 weeks, the experimental animals were sacrificed. Hematoxylin-eosin staining was used to observe the pathological changes of bone marrow cavity and the vacancy rate of bone lacunae in the femoral head of each group. Total antioxidant capacity, superoxide dismutase, glutathione peroxidase, reduced glutathione, and malondialdehyde were detected. TUNEL was used to detect bone cell apoptosis in the femoral head. Immunofluorescence staining was used to determine the distribution of Keapl and Nrf2. Western blot was used to measure Keapl, Nrf2, and HO-1 protein expression in the femoral head. Approval was obtained from the Animal Ethics Committee of the Affiliated Hospital of Qinghai University, approval No. qhdx-201908374. RESULTS AND

CONCLUSION:

(1) Compared with the normal group, the trabecular bone in model group was thinned with structure disorder. Compared with the model group, the trabecular bone structure in control group was restored, and the number of vacant bone lacunae was reduced (P 0.05). (2) The total antioxidant capacity and serum levels of superoxide dismutase, glutathione peroxidase, and reduced glutathione in the model group were significantly lower than those in normal animals (P 0.05), while these indexes were significantly improved in the PRP group than the model and control groups (P < 0.05). (3) The expression of Keapl in the model group was significantly lower than that of the normal group (P < 0.05), and the expression of Nrf2 and HO-1 protein was significantly higher than that of the normal group (P < 0.05). The expression of Keapl in the PRP group was lower than that of the model and control groups (P < 0.05), and the expression of Nrf2 and HO-1 was significantly higher than that of the model and control groups (P < 0.05). Therefore, PRP can effectively inhibit oxidative stress in the process of steroid-induced femoral head necrosis, which may be caused by activating the Keapl/Nrf2/HO-1 signaling pathway.

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Tipo de estudio: Estudio pronóstico Idioma: Chino Revista: Chinese Journal of Tissue Engineering Research Año: 2020 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Tipo de estudio: Estudio pronóstico Idioma: Chino Revista: Chinese Journal of Tissue Engineering Research Año: 2020 Tipo del documento: Artículo