Preferential adsorption of flavonoids and organic acids by amino-modified Fe3O4 nanoparticles (MNP-NH2) / 中草药
Zhongcaoyao
; Zhongcaoyao;(24): 4816-4823, 2018.
Article
en Zh
| WPRIM
| ID: wpr-851625
Biblioteca responsable:
WPRO
ABSTRACT
Objective To synthesize amino-modified Fe3O4 nanoparticles (MNP-NH2) and study the adsorption of flavonoids and organic acids by MNP-NH2. Methods MNP-NH2 were synthesized and characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometer analysis; The adsorption rule of MNP-NH2 was discussed by studying the adsorption properties of 12 monomers. The adsorption properties of MNP-NH2 were assessed under conditions of different ultrasonic time, temperature, ionic strength, and pH. The final elution conditions were determined by L9(34) orthogonal test and the recycling performance was also considered. Results MNP-NH2 synthesized in this study have stable structure, uniform distribution, and good magnetic properties. Adsorption of 12 monomers by MNP-NH2 showed that the mechanism of adsorption was related to the number of ortho-phenolic hydroxyl groups. Ions concentration and temperature had little effect on adsorption for different compounds except pH. The optimized adsorption conditions were extraction for 40 min at 30 ℃ and the final elution conditions were determined to be 5 mL of 20% glacialacetic acid (methanol-water 60∶40) and ultrasonication for 40 min. Conclusion MNP-NH2 can be utilized to extract the effective components of Lonicerae Japonicae Flos and maintain a high adsorption rate of flavonoids. Moreover, MNP-NH2 had great recycling and reproducibility, providing new ideas for the utilization of extracting chemical compounds from complex traditional Chinese medicine and natural medicines.
Texto completo:
1
Índice:
WPRIM
Idioma:
Zh
Revista:
Zhongcaoyao
Año:
2018
Tipo del documento:
Article