Construction and verification of an intelligent measurement model for diabetic foot ulcer / 中南大学学报(医学版)
Zhongnan Daxue xuebao. Yixue ban
; (12): 1138-1146, 2021.
Article
en En
| WPRIM
| ID: wpr-922595
Biblioteca responsable:
WPRO
ABSTRACT
OBJECTIVES@#The measurement of diabetic foot ulcers is important for the success in diabetic foot ulcer management. At present, it lacks the accurate and convenient measurement tools in clinical. In recent years, artificial intelligence technology has demonstrated the potential application value in the field of image segmentation and recognition. This study aims to construct an intelligent measurement model of diabetic foot ulcers based on the deep learning method, and to conduct preliminary verification.@*METHODS@#The data of 1 042 diabetic foot ulcers clinical samples were collected. The ulcers and color areas were manually labeled, of which 782 were used as the training data set and 260 as the test data set. The Mask RCNN ulcer tissue color semantic segmentation and RetinaNet scale digital scale target detection were used to build a model. The training data set was input into the model and iterated. The test data set was used to verify the intelligent measurement model.@*RESULTS@#This study established an intelligent measurement model of diabetic foot ulcers based on deep learning. The mean average precision@.5 intersection over union (mAP@.5IOU) of the color region segmentation in the training set and the test set were 87.9% and 63.9%, respectively; the mAP@.5IOU of the ruler scale digital detection in the training set and the test set were 96.5% and 83.4%, respectively. Compared with the manual measurement result of the test sample, the average error of the intelligent measurement result was about 3 mm.@*CONCLUSIONS@#The intelligent measurement model has good accuracy and robustness in measuring the diabetic foot ulcers. Future research can further optimize the model with larger-scale data samples.
Palabras clave
Texto completo:
1
Índice:
WPRIM
Asunto principal:
Inteligencia Artificial
/
Pie Diabético
/
Diabetes Mellitus
Tipo de estudio:
Guideline
Límite:
Humans
Idioma:
En
Revista:
Zhongnan Daxue xuebao. Yixue ban
Año:
2021
Tipo del documento:
Article