Your browser doesn't support javascript.
loading
Research progress indental pulp tissue engineering scaffolds / 国际生物医学工程杂志
International Journal of Biomedical Engineering ; (6): 479-485, 2021.
Artículo en Chino | WPRIM | ID: wpr-929937
ABSTRACT
Pulp necrosis can cause increased tooth fragility and easy fracture, and hinder the sustainable development of young permanent teeth. Therefore, pulp regeneration therapy has important clinical significance. However, due to the complicated and varied anatomical structure of the pulp tissue, and various components such as nerves and blood vessels, there are many challenges in dental pulp regeneration strategy. In this paper, the recent research progress in the application of dental pulp tissue construction and transplantation by tissue engineering method was reviewed, and the selection of suitable scaffold materials and the construction of dental pulp tissue were discussed. The functional characteristics of scaffold materials were described,such as sodium alginate, chitosan, hyaluronic acid, collagen, gelatin, fibrous protein, silk fibroin, peptides and self-assembled peptides, polylactic acid, polyglycolic acid and their copolymers. In addition, the functions and characteristics of these materials were briefly introduced, as well as the functional modification with growth factors and other biological matrix extract involvement, and functional improvement of the composite scaffolds with complementary effects.Combined with the requirements of clinical operability, the composition design and functional characteristics of the injectable hydrogel scaffolds consisted of hydrophilic composite materials and/or modified with hydrophilic groups were also discussed.This review paper would be useful in providing some reference for the future research and exploration of dental pulp regeneration.

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: International Journal of Biomedical Engineering Año: 2021 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: International Journal of Biomedical Engineering Año: 2021 Tipo del documento: Artículo