Effect of Wuwei Xiaoduyin on NF-κB Signaling Pathway in Lipopolysaccharide-induced Rat Mesangial Cells / 中国实验方剂学杂志
Chinese Journal of Experimental Traditional Medical Formulae
; (24): 16-22, 2022.
Article
en Zh
| WPRIM
| ID: wpr-940346
Biblioteca responsable:
WPRO
ABSTRACT
ObjectiveTo study the effect and mechanism of Wuwei Xiaoduyin in treating rat renal mesangial cells (HBZY-1) induced by lipopolysaccharide (LPS) through the nuclear factor-κB (NF-κB) signaling pathway. MethodRat HBZY-1 cells were randomly assigned into the normal group, model group, benazepril (50 μmol·L-1) group, and high- and low-dose (2.75 and 0.69 g·kg-1) Wuwei Xiaoduyin groups. The normal group, model group, and benazepril group were treated with 10% normal rat serum, and the Wuwei Xiaoduyin groups with 10% medicated serum. Except the normal group, the other four groups were treated with LPS (100 ng·mL-1) for modeling in vitro. The changes of cell morphology were observed under optical microscope. The expression of NF-κB p65 was detected by immunofluorescence (IF) method. Methyl thiazolyl tetrazolium (MTT) colorimetry was employed to detect cytotoxicity and cell proliferation. The levels of interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), laminin (LN), and fibronectin (FN) in cell supernatant were determined by enzyme-linked immunosorbent assay (ELISA). The mRNA levels of IL-1β, FN, and NF-κB p65 were measured by real-time fluorescence quantitative PCR. The protein levels of phosphorylated inhibitor of NF-κB kinase β (p-IKKβ), phosphorylated NF-κB inhibitor (p-IκBα), and NF-κB p65 were determined by Western blot. ResultCompared with the normal group, the modeling increased cell proliferation (P<0.01), elevated the levels of IL-1β, ICAM-1, LN, and FN in cell supernatant (P<0.01), and up-regulated the mRNA levels of IL-1β, FN, and NF-κB p65 (P<0.01) and the protein levels of p-IKKβ, p-IκBα, and NF-κB p65 (P<0.01). Such changes were recovered by benazepril and Wuwei Xiaoduyin (P<0.05, P<0.01). ConclusionWuwei Xiaoduyin can mitigate the inflammatory injury of renal mesangial cells induced by LPS by inhibiting the NF-κB signaling pathway.
Texto completo:
1
Índice:
WPRIM
Tipo de estudio:
Prognostic_studies
Idioma:
Zh
Revista:
Chinese Journal of Experimental Traditional Medical Formulae
Año:
2022
Tipo del documento:
Article