Effects of polydopamine-coated porous titanium alloy scaffolds loaded with zoledronic acid-gelatin nanoparticles for topical sustained drug release on osteoclasts: an in vitro study / 中华创伤骨科杂志
Chinese Journal of Orthopaedic Trauma
; (12): 617-623, 2022.
Article
en Zh
| WPRIM
| ID: wpr-956565
Biblioteca responsable:
WPRO
ABSTRACT
Objective:To analyze the effects of a novel type of polydopamine (PDA)-coated porous titanium alloy scaffolds loaded with zoledronic acid-gelatin nanoparticles (ZOL-GNPs) for topical sustained drug release on osteoclasts in vitro. Methods:After porous titanium alloy scaffolds were fabricated using electron beam melting technique and ZOL-GNPs with different ZOL concentrations (0, 1, 10, 50, 100, 500 μmol/L) were prepared by desolvation method, PDA-coated porous titanium alloy scaffolds loaded with ZOL-GNPs were constructed by combining the two. The characteristics of the scaffolds were analyzed. The biomechanics of 3 different scaffolds (bare porous titanium alloy scaffolds, PDA-coated porous titanium alloy scaffolds, and PDA-coated porous titanium alloy scaffolds loaded with ZOL-GNPs) were investigated. Drug release detection was carried out by high performance liquid chromatography on the 1st, 4th, 7th, 14th, 21st, and 28th days respectively. The osteoclasts were inoculated into the novel scaffolds with different ZOL concentrations. The expression of osteoclast-related genes was detected by real-time quantitative (RT)-polymerase chain reaction (PCR); the expression of osteoclast-related proteins was detected by Western-blot.Results:The PDA-coated porous titanium alloy scaffolds loaded with ZOL-GNPs were successfully constructed. Electron microscope scanning showed that the GNPs were well spheroidized, smooth in surface, and uniformly dispersed, with a particle size of (243.6±63.4) nm. The ZOL-GNPs were uniformly compounded on the surface and in the pores of the scaffolds, and the spheres were regular in shape with no adhesion. The biomechanical experiments showed that the elastic moduli of the porous titanium alloy scaffolds under 3 different conditions were (1.81±0.12) GPa, (1.80±0.23) GPa and (1.81±0.15) GPa, showing no significant difference ( P> 0.05). The drug release percentage in the porous titanium alloy scaffolds was obviously high on the first day, and increased gradually and slowly in the subsequent 27 days. In the scaffolds with a low concentration ZOL, more osteoclasts adhered and proliferated; in the 50 μmol/L scaffolds, spheroid cells appeared; the spheroid cells increased and even apoptosis occurred with an increase in the ZOL concentration. RT-PCR showed that the expression of Ctsk gene and TRAP gene increased with the increased ZOL concentration, peaked in the 50 μmol/L scaffolds, and then decreased with the increased concentration, showing statistically significant differences ( P < 0.05). Western-blot showed that the expression pattern of Ctsk and TRAP was similar to that of their related genes. Conclusions:The novel PDA-coated porous titanium alloy scaffolds loaded with ZOL-GNPs demonstrate good mechanical properties and an anti-osteoporosis effect via their topical sustained drug release. The scaffolds with a ZOL concentration of 50 μmol/L may exert the best effect on inhibition of osteoclasts.
Texto completo:
1
Índice:
WPRIM
Idioma:
Zh
Revista:
Chinese Journal of Orthopaedic Trauma
Año:
2022
Tipo del documento:
Article