Your browser doesn't support javascript.
loading
Cloning and functional analysis of flavanone 3-hydroxylase gene in Rhododendron hybridum Hort / 生物工程学报
Chinese Journal of Biotechnology ; (12): 653-669, 2023.
Artículo en Chino | WPRIM | ID: wpr-970398
ABSTRACT
Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and β-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.
Asunto(s)

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Asunto principal: Filogenia / Proteínas de Plantas / Flavonoides / Secuencia de Aminoácidos / Clonación Molecular / Arabidopsis / Regulación de la Expresión Génica de las Plantas / Rhododendron / Antocianinas Idioma: Chino Revista: Chinese Journal of Biotechnology Año: 2023 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Asunto principal: Filogenia / Proteínas de Plantas / Flavonoides / Secuencia de Aminoácidos / Clonación Molecular / Arabidopsis / Regulación de la Expresión Génica de las Plantas / Rhododendron / Antocianinas Idioma: Chino Revista: Chinese Journal of Biotechnology Año: 2023 Tipo del documento: Artículo