Your browser doesn't support javascript.
loading
Progress of Cell Mechanics in 2022 / 医用生物力学
Journal of Medical Biomechanics ; (6): E212-E219, 2023.
Artículo en Chino | WPRIM | ID: wpr-987938
ABSTRACT
The mechanical microenvironment of cells plays a critical role in regulating the physiological function of cells. Cells in vivo are often subjected to a variety of mechanical forces from their mechanical micro-environment, such as shear, tension, and compression. At the same time, cells can adhere to the extracellular matrix (ECM) through adhesion molecules (such as integrin-ligand binding), and further sense the stiffness of the ECM. Cell mechanics mainly studies the properties and behavior of living cells under mechanical forces, and how they relate to cell functions. This review summarized the advances in cell mechanics in 2022, focusing on integrin-ligand interactions and the effects of matrix stiffness and mechanical forces on cell physiological behavior and morphogenesis.

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Journal of Medical Biomechanics Año: 2023 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: Disponible Índice: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Journal of Medical Biomechanics Año: 2023 Tipo del documento: Artículo