Role of membrane-associated cytoskeleton in maintenance of membrane structure.
J Biosci
; 1985 Aug; 8(1&2): 355-362
Article
de En
| IMSEAR
| ID: sea-160399
Various structural components of biological membranes are asymmetrically localized in the two surfaces of the membrane bilayer. This asymmetry is absolute for membrane (glyco) proteins, but only a partial asymmetry has been observed for membrane phospholipids. In the red cell membrane, choline-phospholipids are localized mainly in the outer monolayer whereas aminophospholipids are distributed almost exclusively in the inner monolayer. Several evidences are now available to suggest that this distribution of membrane phospholipids in red cells is directly or indirectly maintained by the membrane-associated cytoskeleton (membrane skeleton). This belief is well supported by the previous as well as recent studies carried out in the authors laboratory. Previously, it has been shown that lipidlipid interactions play no major role in maintaining the transmembrane phospholipid asymmetry in erythrocytes, and that the asymmetry is lost upon covalent crosslinking of the major membrane skeletal protein, spectrin. The recent data presented here further shows that degradation or denaturation of spectrin indices rapid transbilayer movement of membrane phospholipids in the cells which, in turn, leads to more random phospholipid distributions across the membrane. These studies taken together strongly suggest that the skeletonmembrane associations are the major determinants of the transmembrane phospholipid asymmetry in erythrocytes, and that the dissociation of the skeleton from the membrane bilayer probably results in generation of new reorientation sites for phospholipids in the membrane.
Texte intégral:
1
Indice:
IMSEAR
langue:
En
Texte intégral:
J Biosci
Année:
1985
Type:
Article