Micromechanical properties of articular cartilage resilience under different compression conditions / 中国组织工程研究
Chinese Journal of Tissue Engineering Research
; (53): 3147-3151, 2017.
Article
de Zh
| WPRIM
| ID: wpr-616357
Bibliothèque responsable:
WPRO
ABSTRACT
BACKGROUND: It is of great significance to study the resilience of articular cartilage for human daily routine and their match quality. OBJECTIVE: To analyze the micromechanical properties of articular cartilage resilience under different loads and at time points. METHODS: The swine cartilage samples coated with tracers were compressed using the MTF-100 tensile machine, and the cartilage compression and resilience were recorded by CCD. Images were processed using digital image correlation technology.RESULTS AND CONCLUSION: During resilience, the strain value on the superficial surface of the cartilage was decreased most, successively followed by the middle layer and the deep layer, while the time of a decrease from 20%, 10% and 6% to 3% was similar. The longer the resilience time was, the more slowly the strain changed in different layers of the cartilage, but the ultimate strain was less than 1%. On the same layer under different compressive stress, the larger load caused faster strain change firstly, and then the smaller load brought about faster strain change. The effect of different continuous compressive time on the same layer of cartilage was similar with the load. These results showed that 90% resilience of the articular cartilage occurred within the first 15 minutes. The mechanical resilience of different layers of the articular cartilage has a close relationship with the loading and the loading time, and both compressive time and loading do harm to the resilience of articular cartilage. Besides, the cartilage will rebound to the state before compression.
Texte intégral:
1
Indice:
WPRIM
langue:
Zh
Texte intégral:
Chinese Journal of Tissue Engineering Research
Année:
2017
Type:
Article