Your browser doesn't support javascript.
loading
A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering
Tissue Engineering and Regenerative Medicine ; (6): 735-750, 2018.
Article Dans Anglais | WPRIM | ID: wpr-718791
ABSTRACT

BACKGROUND:

The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica (n-SiO₂) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering.

METHODS:

We evaluated the effect of n-HA and n-SiO₂ incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay.

RESULTS:

All the samples demonstrated bead-less morphologies with an average diameter in the range of 190–260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with n-SiO₂. While the hydrophilicity of n-SiO₂ incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to n-SiO₂ incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and n-SiO₂.

CONCLUSION:

Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.
Sujets)

Texte intégral: Disponible Indice: WPRIM (Pacifique occidental) Sujet Principal: Ostéoblastes / Cellules souches / Résistance à la traction / Matériaux biocompatibles / Os et tissu osseux / Adhérence cellulaire / Spectroscopie infrarouge à transformée de Fourier / Durapatite / Silice / Ingénierie tissulaire Limites du sujet: Humains langue: Anglais Texte intégral: Tissue Engineering and Regenerative Medicine Année: 2018 Type: Article

Documents relatifs à ce sujet

MEDLINE

...
LILACS

LIS

Texte intégral: Disponible Indice: WPRIM (Pacifique occidental) Sujet Principal: Ostéoblastes / Cellules souches / Résistance à la traction / Matériaux biocompatibles / Os et tissu osseux / Adhérence cellulaire / Spectroscopie infrarouge à transformée de Fourier / Durapatite / Silice / Ingénierie tissulaire Limites du sujet: Humains langue: Anglais Texte intégral: Tissue Engineering and Regenerative Medicine Année: 2018 Type: Article