Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm / 生物医学工程学杂志
J. biomed. eng
; Sheng wu yi xue gong cheng xue za zhi;(6): 855-862, 2020.
Article
de Zh
| WPRIM
| ID: wpr-879213
Bibliothèque responsable:
WPRO
ABSTRACT
The construction of brain functional network based on resting-state functional magnetic resonance imaging (fMRI) is an effective method to reveal the mechanism of human brain operation, but the common brain functional network generally contains a lot of noise, which leads to wrong analysis results. In this paper, the least absolute shrinkage and selection operator (LASSO) model in compressed sensing is used to reconstruct the brain functional network. This model uses the sparsity of
Mots clés
Texte intégral:
1
Indice:
WPRIM
Sujet Principal:
Algorithmes
/
Traitement d'image par ordinateur
/
Encéphale
/
Imagerie par résonance magnétique
Type d'étude:
Prognostic_studies
Limites du sujet:
Humans
langue:
Zh
Texte intégral:
J. biomed. eng
/
Sheng wu yi xue gong cheng xue za zhi
Année:
2020
Type:
Article