Metformin inhibiting the activation of NLRP3 inflammasome and pyroptosis in diabetic retinal vascular endothelial cells / 中华眼底病杂志
Chinese Journal of Ocular Fundus Diseases
; (6): 408-414, 2023.
Article
de Zh
| WPRIM
| ID: wpr-995644
Bibliothèque responsable:
WPRO
ABSTRACT
Objective:To observe the effect of metformin (Met) on inflammatory bodies and focal death in human retinal microvascular endothelial cells (hRMEC) in diabetes mellitus (DM) microenvironment.Methods:Experimental research was divided into in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 9 healthy C57BL/6J male mice were randomly divided into DM group, normal control group, and DM+Met group, with 3 mice in each group. DM group and DM+Met group mice were induced by streptozotocin to establish DM model, and DM+Met group was given Met 400 mg/ (kg · d) intervention. Eight weeks after modeling, the expression of NLRP3, cleaved-membrane perforating protein D (GSDMD) and cleaved-Caspase-1 in the retina of mice in the normal control group, DM group and DM+Met group were observed by immunohistochemical staining. In vitro cell experiments: hRMEC was divided into conventional culture cell group (N group), advanced glycation end products (AGE) group, and AGE+Met group. Joining the AGE, AGE+Met groups cells were induced by 150 μg/ml of glycation end products, and 2.0 mmol/L Met was added to the AGE+Met group. Pyroptosis was detected by flow cytometry; 2' ,7'-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe was used to detect the expression of reactive oxygen species (ROS) in cells of each group. Real-time fluorescence quantitative polymerase chain reaction and Western blot were used to detect the relative mRNA and protein expression levels of NLRP3, cleaved-GSDMD, cleaved-Caspase-1 in each group of cells. Single factor analysis of variance was used for comparison among the three groups.Results:In vivo animal experiments: compared with the DM group, the expression of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in the retina of normal control group and DM+Met group mice was significantly reduced, with significant difference among the 3 groups ( F=43.478, 36.643, 24.464; P<0.01). In vitro cell experiment and flow cytometry showed that the pyroptosis rate of AGE group was significantly higher than that of N group and AGE+Met group ( F=32.598, P<0.01). The DCFH-DA detection results showed that the intracellular ROS levels in the N group and AGE+Met group were significantly lower than those in the AGE group, with the significant difference ( F=47.267, P<0.01). The mRNA ( F=51.563, 32.192, 44.473; P<0.01) and protein levels ( F=63.372, 54.463, 48.412; P<0.01) of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in hRMEC of the AGE+Met group were significantly reduced compared to the N group. Conclusion:Met can down regulate the expression of NLRP3 inflammatory body related factors in hRMEC and inhibit pyroptosis.
Texte intégral:
1
Indice:
WPRIM
langue:
Zh
Texte intégral:
Chinese Journal of Ocular Fundus Diseases
Année:
2023
Type:
Article