Your browser doesn't support javascript.
loading
Function analysis of anthocyanidin synthase from Morus alba L. by expression in bacteria and tobacco
Li, Jun; Zhao, Aichun; Yu, Maode; Li, Yaofeng; Liu, Xiaoqing; Chen, Xiangyun.
  • Li, Jun; Guiyang University of Chinese Medicine. Guiyang. CN
  • Zhao, Aichun; Southwest University. College of Biotechnology. State Key Laboratory of Silkworm Genome Biology. Chongqing. CN
  • Yu, Maode; Southwest University. College of Biotechnology. State Key Laboratory of Silkworm Genome Biology. Chongqing. CN
  • Li, Yaofeng; Guiyang University of Chinese Medicine. Guiyang. CN
  • Liu, Xiaoqing; Guiyang University of Chinese Medicine. Guiyang. CN
  • Chen, Xiangyun; Guiyang University of Chinese Medicine. Guiyang. CN
Electron. j. biotechnol ; 36: 9-14, nov. 2018. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1047978
ABSTRACT
Background: Flavonoids are a kind of important secondary metabolite and are commonly considered to provide protection to plants against stress and UV-B for a long time. Anthocyanidin synthase (ANS), which encodes a dioxygenase in the flavonoid pathway, catalyzes the conversion of leucoanthocyanidins to anthocyanidins, but there is no direct evidence indicating that it provides tolerance to stress in plants. Results: To investigate whether ANS can increase tolerance to abiotic stress, MaANS was isolated from mulberry fruits and transformed into tobacco. Our results suggested that the bacterially expressed MaANS protein can convert dihydroquercetin to quercetin. Overexpression of MaANS remarkably increased the accumulation of total flavonoids in transgenic lines and anthocyanins in corollas of flowers. Transgenic lines showed higher tolerance to NaCl and mannitol stress. Conclusions: These results indicated that MaANS participates in various dioxygenase activities, and it can protect plants against abiotic stress by improving the ROS-scavenging ability. Thus, this alternative approach in crop breeding can be considered in the improvement of stress tolerance by enriching flavonoid production in plants
Assuntos


Texto completo: DisponíveL Índice: LILACS (Américas) Assunto principal: Oxigenases / Nicotiana / Morus Idioma: Inglês Revista: Electron. j. biotechnol Assunto da revista: Biotecnologia Ano de publicação: 2018 Tipo de documento: Artigo País de afiliação: China Instituição/País de afiliação: Guiyang University of Chinese Medicine/CN / Southwest University/CN

Similares

MEDLINE

...
LILACS

LIS


Texto completo: DisponíveL Índice: LILACS (Américas) Assunto principal: Oxigenases / Nicotiana / Morus Idioma: Inglês Revista: Electron. j. biotechnol Assunto da revista: Biotecnologia Ano de publicação: 2018 Tipo de documento: Artigo País de afiliação: China Instituição/País de afiliação: Guiyang University of Chinese Medicine/CN / Southwest University/CN