Cell Journal [Yakhteh]. 2017; 19 (Supp. 1): 55-65
em En
| IMEMR
| ID: emr-189340
Biblioteca responsável:
EMRO
Objective: In this study we prepared a novel formulation of liposomal doxorubicin [L-DOX]. The drug dose was optimized by analyses of cellular uptake and cell viability of osteosarcoma [OS] cell lines upon exposure to nanoliposomes that contained varying DOX concentrations. We intended to reduce the cytotoxicity of DOX and improve characteristics of the nanosystems
Materials and Methods: In this experimental study, we prepared liposomes by the pH gradient hydration method. Various characterization tests that included dynamic light scattering [DLS], cryogenic transmission electron microscopy [Cryo-TEM] imaging, and UV-Vis spectrophotometry were employed to evaluate the quality of the nanocarriers. In addition, the CyQUANT[registered] assay and fluorescence microscope imaging were used on various OS cell lines [MG-63, U2-OS, SaOS-2, SaOS-LM7] and Human primary osteoblasts cells, as novel methods to determine cell viability and in vitro transfection efficacy
Results: We observed an entrapment efficiency of 84% for DOX within the optimized liposomal formulation [L-DOX] that had a liposomal diameter of 96 nm. Less than 37% of DOX released after 48 hours and L-DOX could be stored stably for 14 days. L-DOX increased DOX toxicity by 1.8-4.6 times for the OS cell lines and only 1.3 times for Human primary osteoblasts cells compared to free DOX, which confirmed a higher sensitivity of the OS cell lines versus Human primary osteoblasts cells for L-DOX. We deduced that L-DOX passed more freely through the cell membrane compared to free DOX
Conclusion: We successfully synthesized a stealth L-DOX that contained natural phospholipid by the pH gradient method, which could encapsulate DOX with 84% efficiency. The resulting nanoparticles were round, with a suitable particle size, and stable for 14 days. These nanoparticles allowed for adequately controlled DOX release, increased cell permeability compared to free DOX, and increased tumor cell death. L-DOX provided a novel, more effective therapy for OS treatment
Materials and Methods: In this experimental study, we prepared liposomes by the pH gradient hydration method. Various characterization tests that included dynamic light scattering [DLS], cryogenic transmission electron microscopy [Cryo-TEM] imaging, and UV-Vis spectrophotometry were employed to evaluate the quality of the nanocarriers. In addition, the CyQUANT[registered] assay and fluorescence microscope imaging were used on various OS cell lines [MG-63, U2-OS, SaOS-2, SaOS-LM7] and Human primary osteoblasts cells, as novel methods to determine cell viability and in vitro transfection efficacy
Results: We observed an entrapment efficiency of 84% for DOX within the optimized liposomal formulation [L-DOX] that had a liposomal diameter of 96 nm. Less than 37% of DOX released after 48 hours and L-DOX could be stored stably for 14 days. L-DOX increased DOX toxicity by 1.8-4.6 times for the OS cell lines and only 1.3 times for Human primary osteoblasts cells compared to free DOX, which confirmed a higher sensitivity of the OS cell lines versus Human primary osteoblasts cells for L-DOX. We deduced that L-DOX passed more freely through the cell membrane compared to free DOX
Conclusion: We successfully synthesized a stealth L-DOX that contained natural phospholipid by the pH gradient method, which could encapsulate DOX with 84% efficiency. The resulting nanoparticles were round, with a suitable particle size, and stable for 14 days. These nanoparticles allowed for adequately controlled DOX release, increased cell permeability compared to free DOX, and increased tumor cell death. L-DOX provided a novel, more effective therapy for OS treatment
Buscar no Google
Índice:
IMEMR
Assunto principal:
Polietilenoglicóis
/
Osteossarcoma
/
Linhagem Celular
/
Sistemas de Liberação de Medicamentos
/
Linhagem Celular Tumoral
Limite:
Humans
Idioma:
En
Revista:
Cell J. [Yakhteh]
Ano de publicação:
2017