Your browser doesn't support javascript.
loading
Enhancement of biodegradation potential of catechol 1, 2-dioxygenase through its immobilization in calcium alginate gel
Guzik, Urszula; Hupert-Kocurek, Katarzyna; Marchlewicz, Ariel; Wojcieszynska, Danuta.
  • Guzik, Urszula; University of Silesia in Katowice. Faculty of and Environmental Protection. Department of Biochemistry. Katowice. PL
  • Hupert-Kocurek, Katarzyna; University of Silesia in Katowice. Faculty of and Environmental Protection. Department of Biochemistry. Katowice. PL
  • Marchlewicz, Ariel; University of Silesia in Katowice. Faculty of and Environmental Protection. Department of Biochemistry. Katowice. PL
  • Wojcieszynska, Danuta; University of Silesia in Katowice. Faculty of and Environmental Protection. Department of Biochemistry. Katowice. PL
Electron. j. biotechnol ; 17(2): 83-88, Mar. 2014. graf, tab
Artigo em Inglês | LILACS | ID: lil-714277
ABSTRACT
Background In biodegradation processes free enzymes often undergo deactivation. Thus, it is very important to obtain highly stable enzymes by different methods. Immobilization allows for successful stabilization of many multimeric enzymes by increasing the rigidity of the enzyme structure. This study aimed to evaluate some environmental factors that affect catechol 1,2-dioxygenase from Stenotrophomonas maltophilia KB2 immobilized in alginate hydrogel. The goal of the present work was to improve the functional stability of the enzyme by increasing its structural rigidity. Results Immobilization yield and expressed activity were 100% and 56%, respectively. Under the same storage conditions, the activity of the immobilized enzyme was still observed on the 28th d of incubation at 4°C, whereas the free enzyme lost its activity after 14 d. The immobilized enzyme required approximately 10°C lower temperature for its optimal activity than the free enzyme. Immobilization shifted the optimal pH from 8 for the soluble enzyme to 7 for the immobilized enzyme. The immobilized catechol 1,2-dioxygenase showed activity against 3-methylcatechol, 4-methylcatechol, 3-chlorocatechol, 4-chlorocatechol, and 3,5-dichlorocatechol. The immobilization of the enzyme promoted its stabilization against any distorting agents: aliphatic alcohols, phenols, and chelators. Conclusions The entrapment of the catechol 1,2-dioxygenase from S. maltophilia KB2 has been shown to be an effective method for improving the functional properties of the enzyme. Increased resistance to inactivation by higher substrate concentration and other factors affecting enzyme activity as well as broadened substrate specificity compared to the soluble enzyme, makes the immobilized catechol 1,2-dioxygenase suitable for the bioremediation and detoxification of xenobiotic-contaminated environments.
Assuntos


Texto completo: DisponíveL Índice: LILACS (Américas) Assunto principal: Biodegradação Ambiental / Stenotrophomonas maltophilia / Catecol 1,2-Dioxigenase Idioma: Inglês Revista: Electron. j. biotechnol Assunto da revista: Biotecnologia Ano de publicação: 2014 Tipo de documento: Artigo País de afiliação: Polônia Instituição/País de afiliação: University of Silesia in Katowice/PL

Similares

MEDLINE

...
LILACS

LIS


Texto completo: DisponíveL Índice: LILACS (Américas) Assunto principal: Biodegradação Ambiental / Stenotrophomonas maltophilia / Catecol 1,2-Dioxigenase Idioma: Inglês Revista: Electron. j. biotechnol Assunto da revista: Biotecnologia Ano de publicação: 2014 Tipo de documento: Artigo País de afiliação: Polônia Instituição/País de afiliação: University of Silesia in Katowice/PL