Your browser doesn't support javascript.
loading
Effects of epicatechin, a crosslinking agent, on human dental pulp cells cultured in collagen scaffolds
Lim, Eun-su; Lim, Myung-Jin; Min, Kyung-San; Kwon, Young-Sun; Hwang, Yun-Chan; Yu, Mi-Kyung; Hong, Chan-Ui; Lee, Kwang-Won.
  • Lim, Eun-su; Chonbuk National University. School of Dentistry. Institute of Oral Bioscience. Jeonju. KR
  • Lim, Myung-Jin; Chonbuk National University. School of Dentistry. Institute of Oral Bioscience. Jeonju. KR
  • Min, Kyung-San; Chonbuk National University. School of Dentistry. Institute of Oral Bioscience. Jeonju. KR
  • Kwon, Young-Sun; Chonbuk National University. School of Dentistry. Institute of Oral Bioscience. Jeonju. KR
  • Hwang, Yun-Chan; Chonbuk National University. School of Dentistry. Institute of Oral Bioscience. Jeonju. KR
  • Yu, Mi-Kyung; Chonbuk National University. School of Dentistry. Institute of Oral Bioscience. Jeonju. KR
  • Hong, Chan-Ui; Chonbuk National University. School of Dentistry. Institute of Oral Bioscience. Jeonju. KR
  • Lee, Kwang-Won; Chonbuk National University. School of Dentistry. Institute of Oral Bioscience. Jeonju. KR
J. appl. oral sci ; 24(1): 76-84, Jan.-Feb. 2016. graf
Artigo em Inglês | LILACS, BBO | ID: lil-777354
ABSTRACT
ABSTRACT Objective The purpose of this study was to investigate the biological effects of epicatechin (ECN), a crosslinking agent, on human dental pulp cells (hDPCs) cultured in collagen scaffolds. Material and Method To evaluate the effects of ECN on the proliferation of hDPCs, cell counting was performed using optical and fluorescent microscopy. Measurements of alkaline phosphatase (ALP) activity, alizarin red staining, and real-time polymerase chain reactions were performed to assess odontogenic differentiation. The compressive strength and setting time of collagen scaffolds containing ECN were measured. Differential scanning calorimetry was performed to analyze the thermal behavior of collagen in the presence of ECN. Results Epicatechin increased ALP activity, mineralized nodule formation, and the mRNA expression of dentin sialophosphoprotein (DSPP), a specific odontogenic-related marker. Furthermore, ECN upregulated the expression of DSPP in hDPCs cultured in collagen scaffolds. Epicatechin activated the extracellular signal-regulated kinase (ERK) and the treatment with an ERK inhibitor (U0126) blocked the expression of DSPP. The compressive strength was increased and the setting time was shortened in a dose-dependent manner. The number of cells cultured in the ECN-treated collagen scaffolds was significantly increased compared to the cells in the untreated control group. Conclusions Our results revealed that ECN promoted the proliferation and differentiation of hDPCs. Furthermore, the differentiation was regulated by the ERK signaling pathway. Changes in mechanical properties are related to cell fate, including proliferation and differentiation. Therefore, our study suggests the ECN treatment might be desirable for dentin-pulp complex regeneration.
Assuntos


Texto completo: DisponíveL Índice: LILACS (Américas) Assunto principal: Catequina / Colágeno / Reagentes de Ligações Cruzadas / Polpa Dentária / Alicerces Teciduais Tipo de estudo: Estudos de avaliação Limite: Humanos Idioma: Inglês Revista: J. appl. oral sci Assunto da revista: Odontologia Ano de publicação: 2016 Tipo de documento: Artigo País de afiliação: Coréia do Sul Instituição/País de afiliação: Chonbuk National University/KR

Similares

MEDLINE

...
LILACS

LIS


Texto completo: DisponíveL Índice: LILACS (Américas) Assunto principal: Catequina / Colágeno / Reagentes de Ligações Cruzadas / Polpa Dentária / Alicerces Teciduais Tipo de estudo: Estudos de avaliação Limite: Humanos Idioma: Inglês Revista: J. appl. oral sci Assunto da revista: Odontologia Ano de publicação: 2016 Tipo de documento: Artigo País de afiliação: Coréia do Sul Instituição/País de afiliação: Chonbuk National University/KR