Your browser doesn't support javascript.
loading
Insight into the mechanisms regulating immune homeostasis in health and disease.
Artigo em Inglês | IMSEAR | ID: sea-136391
ABSTRACT
Innate and adaptive immune systems consist of cells and molecules that work together in concert to fight against microbial infection and maintain homeostasis. Hosts encounter microbes / exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) all the time and they must have proper mechanisms to counteract the danger such that appropriate responses (e.g., degree of inflammation and types of mediators induced) can be mounted in different scenarios. Increasing numbers of endogenous danger signals of host origin are being identified including, for example, uric acid and cholesterol crystals, high mobility group box1 (HMGB1) protein, oxidized LDL, vesicans, heat shock proteins (HSPs) and self DNA. Many of these endogenous ligands have been shown to be associated with inflammation-related diseases like atherosclerosis, gout and type 2 diabetes. Several DAMPs appear to have the ability to interact with more than one receptor. We are now beginning to understand how the immune system can distinguish infection from endogenous ligands elaborated following cellular insults and tissue damage. Appropriate responses to maintain the homeostatic state in health and disease depend largely on the recognition and response to these stimuli by germline encoded pattern-recognition receptors (PRRs) present on both immune and non-immune cells. These receptors are, for example, Toll-like receptors (TLRs), C-type lectin receptors (CLRs) and cytosolic receptors (e.g., RLRs, NLRs and some intracellular DNA sensors). Atypical PRR “danger” receptors, like the receptor for advanced glycation end products (RAGE) and their ligands have been identified. A proper response to maintain homeostasis relies on specific negative regulators and regulatory pathways to dampen its response to tissue injury while maintaining the capacity to eliminate infection and induce proper tissue repair. Moreover, some PRRs (e.g., TLR2,TLR4 and NLRP3) and atypical PRRs can recognize both PAMPs and DAMPs, either as single entities or after forming complexes (e.g., immune complexes, or DNA- HMGB1 and DNA-LL37 complexes), so there must be a mechanism to selectively depress or alleviate the inflammatory response to DAMPs, while leaving that of PAMPs intact. Excessive inflammatory responses can induce considerable tissue damage and can be highly detrimental to the host. For example, CD24 reacting with HMGB1 and HSPs has been implicated to function as negative regulator for RAGE. In this review, I will briefly overview the information on various host and microbial components and bring together the information to synthesize a model to explain how homeostasis can be maintained in states of health and disease. Understanding the molecular mechanisms by which the immune system functions under different scenarios will provide us with ways and means to design appropriate approaches, for example, to prevent or treat autoimmune and inflammatory diseases or the ability to design new drugs or formulate safe chemicals for vaccine adjuvants.

Texto completo: DisponíveL Índice: IMSEAR (Sudeste Asiático) Idioma: Inglês Ano de publicação: 2011 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: IMSEAR (Sudeste Asiático) Idioma: Inglês Ano de publicação: 2011 Tipo de documento: Artigo