Your browser doesn't support javascript.
loading
Prophylactic combined supplementation of choline and docosahexaenoic acid attenuates vascular cognitive impairment and preserves hippocampal cell viability in rat model of chronic cerebral hypoperfusion ischemic brain injury.
Artigo em Inglês | IMSEAR | ID: sea-165119
ABSTRACT

Background:

Stroke is the second cause of mortality in the world and third leading cause of disability in surviving victims. Cerebral ischemic cascade involves multiple pathways that can result in motor and cognitive deficits. The current treatment strategy focuses mainly on motor recovery, and the management of post-stroke cognitive impairment is largely neglected. Similarly, very few studies have explored the prophylactic combined synergetic treatment strategies that have the potential to target multiple pathways in the ischemic cascade to alleviate vascular cognitive impairment (VCI) in the event of an ischemic stroke. Choline and docosahexaenoic acid (Cho-DHA) are both essential neuronal membrane phospholipid precursors, known to be important in enhancing cognitive functions. The objective of present study was to explore the prophylactic efficacy of combined Cho-DHA supplementation (Cho-DHA suppl.) in attenuating VCI in a rodent model of ischemic brain injury.

Methods:

An 10-months-old male Wistar rats were subdivided into four groups (n=8/group); normal control (NC), bilateral common carotid artery occlusion (BCCAO) induced ischemic brain injury group, sham BCCAO (S-BCCAO) group, and prophylactic combined Cho-DHA suppl. BCCAO group. Subsequently, all groups of rats were tested for cognition and neuro-morphological changes in the hippocampus.

Results:

BCCAO rats showed significant learning and memory deficits (p<0.05) and neuronal injury compared to S-BCCAO and NC rats. These cognitive deficits and neuronal injury were significantly (p<0.01) attenuated in Cho-DHA suppl. BCCAO rats.

Conclusion:

Prophylactic combined Cho-DHA suppl. may be envisaged as an effective preventive strategy to attenuate VCI and neuronal injury in high-risk individuals susceptible for a future event of an ischemic stroke.

Texto completo: DisponíveL Índice: IMSEAR (Sudeste Asiático) Idioma: Inglês Ano de publicação: 2015 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: IMSEAR (Sudeste Asiático) Idioma: Inglês Ano de publicação: 2015 Tipo de documento: Artigo