Improved Detection of Urolithiasis Using High-Resolution Computed Tomography Images by a Vision Transformer Model / 대한배뇨장애요실금학회지
International Neurourology Journal
; : S99-103, 2023.
Article
em En
| WPRIM
| ID: wpr-1000563
Biblioteca responsável:
WPRO
ABSTRACT
Purpose@#Urinary stones cause lateral abdominal pain and are a prevalent condition among younger age groups. The diagnosis typically involves assessing symptoms, conducting physical examinations, performing urine tests, and utilizing radiological imaging. Artificial intelligence models have demonstrated remarkable capabilities in detecting stones. However, due to insufficient datasets, the performance of these models has not reached a level suitable for practical application. Consequently, this study introduces a vision transformer (ViT)-based pipeline for detecting urinary stones, using computed tomography images with augmentation. @*Methods@#The super-resolution convolutional neural network (SRCNN) model was employed to enhance the resolution of a given dataset, followed by data augmentation using CycleGAN. Subsequently, the ViT model facilitated the detection and classification of urinary tract stones. The model’s performance was evaluated using accuracy, precision, and recall as metrics. @*Results@#The deep learning model based on ViT showed superior performance compared to other existing models. Furthermore, the performance increased with the size of the backbone model. @*Conclusions@#The study proposes a way to utilize medical data to improve the diagnosis of urinary tract stones. SRCNN was used for data preprocessing to enhance resolution, while CycleGAN was utilized for data augmentation. The ViT model was utilized for stone detection, and its performance was validated through metrics such as accuracy, sensitivity, specificity, and the F1 score. It is anticipated that this research will aid in the early diagnosis and treatment of urinary tract stones, thereby improving the efficiency of medical personnel.
Texto completo:
1
Índice:
WPRIM
Idioma:
En
Revista:
International Neurourology Journal
Ano de publicação:
2023
Tipo de documento:
Article