Your browser doesn't support javascript.
loading
Wheat TaMYB1A Negatively Regulates the Phenylpropanoid Pathway and Plant Height / 中国生物化学与分子生物学报
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1300-1313, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1015644
ABSTRACT
The phenylpropanoid pathway is one of the important pathways for synthesizing plant secondary metabolites, which can produce lignin, flavonoid, and sinapoylmalate. These compounds can not only affect the plant growth, development, and stress response, but also be used to produce perfume, pesticide, dye, medicine, feed, and biomass energy. R2R3-MYBs play important roles in regulating plant secondary metabolism, organ development, and in responding to environmental stresses. Wheat (Triticum aestivum L.) is an important food crop, but lots of straw will be produced accompanied by grain yields. Therefore, elucidating the function and regulatory mechanism of R2R3 MYBs of wheat is crucial for the effective utilization of the wheat straw. RT-PCR results showed that TaMYB1A was highly expressed in the wheat stems, and the GFP-TaMYB1A fusion protein was mainly localized in the nucleus of the N. benthamiana epidermal cells. TaMYB1A has transcriptional repressive activity in yeast cells. In this study, TaMYB1A-overexpressed transgenic Arabidopsis lines were generated to elucidate the effect of overexpression of TaMYB1A on the biosynthesis of lignin and flavonoid. Our results suggested that overexpression of TaMYB1A inhibited the plant height (P < 0. 05) and decreased the lignin (P < 0. 05) and flavonoid (P < 0. 05) biosynthesis of the transgenic Arabidopsis plants significantly. TaMYB1A could bind to the promoters of the Arabidopsis At4CL1, AtC4H, AtC3H, and AtCHS as well as the wheat Ta4CL1 and TaC4H1 revealed by yeast one-hybrid (Y1H) assasy, the transcriptional repressive effect of TaMYB1A on At4CL1, AtC4H, AtC3H, and AtCHS was confirmed by dual-luciferase reporter systems and also on Ta4CL1 and TaC4H1 by a genetic approach. Gene chip and quantitative RT-PCR (qRT-PCR) results showed that overexpression of TaMYB1A down-regulated the expression of most of the key genes involved in the phenylpropanoid metabolism and decreased the 4CL activity (P < 0. 05) of the transgenic Arabidopsis plants significantly. As suggested above, the wheat TaMYB1A belongs to the subgroup 4 R2R3 MYB transcription factors. TaMYB1A could bind to the promoters of the key genes involved in phenylpropanoid metabolism, repress their expression and negatively regulate the phenylpropanoid metabolism pathway and plant height.

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Journal of Biochemistry and Molecular Biology Ano de publicação: 2023 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Idioma: Chinês Revista: Chinese Journal of Biochemistry and Molecular Biology Ano de publicação: 2023 Tipo de documento: Artigo