Effects of tRNA and tRNA-derived Fragments on Skeletal Muscle Development / 中国生物化学与分子生物学报
Chinese Journal of Biochemistry and Molecular Biology
; (12): 1180-1187, 2021.
Article
em Zh
| WPRIM
| ID: wpr-1015874
Biblioteca responsável:
WPRO
ABSTRACT
Skeletal muscle is an important tissue of human and livestock. The study of the muscle development is of great significance for treating muscle diseases and improving livestock meat quality. The process of muscle development is controlled by several myogenic transcription factors and signaling pathways. In addition, recent findings established that several noncoding RNAs play a critical role in the regulation of muscle development such as long non-coding RNA (lncRNA), microRNA (miRNA) and circu- lar RNA (circRNA), etc. The detailed mechanism of muscle development is not well understood. Transfer RNAs (tRNAs) are fundamental components in the translation machinery as an adaptor molecule, and tRNA pool could be differentially exploited to modulate expression of mRNAs. In addition, tRNA can be cleaved into tRNA-derived fragments (tRFs) by a variety of ribonucleases (RNases) upon various stress conditions. Unlike the post-transcriptional regulation of lncRNA and miRNA on muscle development, tRNA has been implicated in various aspects of muscle development. Mitochondria play a central role in a plethora of processes related to the maintenance of muscle cellular homeostasis and genomic integrity. Mitochondrial tRNA(mt-tRNA) gene mutations lead to multiple myopathy because human mitochondrial genome is extremely small. The regulation of tRF is similar to miRNAs in regards to the related physiological processes, but are more conservative than miRNA. It is generally believed that tRF has strong tissue specificity, disease specificity and temporal specificity. Some skeletal muscle-specific tRFs could act posttranscriptionally via RNAi or targeting related genes. However, the tRF-sequencing analysis and functional mechanism of tRF are rarely studied in skeletal muscles. The myopathy caused by mitochondrial tRNA gene mutations are particularly complex, which are one of the challenges to diagnose, treat, or prevent diseases. Compared with other noncoding RNAs, the structural complexity of tRF also brings great challenges to data mining and analysis. In this review, we summarize the formation and function of tRNA and tRF especially in muscle development, which will deepen our understandings of related myopathy, and provide new ideas and directions for the investigation of skeletal muscle.
Texto completo:
1
Índice:
WPRIM
Idioma:
Zh
Revista:
Chinese Journal of Biochemistry and Molecular Biology
Ano de publicação:
2021
Tipo de documento:
Article