Your browser doesn't support javascript.
loading
Biomechanical features of posterior"Y"osteotomy and fixation in treatment of ankylosing spondylitis based on finite element simulation analysis / 中国组织工程研究
Article em Zh | WPRIM | ID: wpr-1021471
Biblioteca responsável: WPRO
ABSTRACT
BACKGROUND:Ankylosing spondylitis is a progressive inflammation of spinal stiffness deformity caused by tissue ossification and fibrosis.The posture of ankylosing spondylitis patients is abnormal and their activities are limited that minor injuries can lead to thoracolumbar fractures.Traditional medical image observation limits doctors'preoperative decision planning and postoperative disease prevention for ankylosing spondylitis treatment. OBJECTIVE:Based on the spinal model of ankylosing spondylitis patients before and after posterior spinal cancellous ossification osteotomy("Y"osteotomy for short),to explore the biomechanical changes of"Y"osteotomy and fixation in the treatment of ankylosing spondylitis. METHODS:Based on the preoperative and postoperative CT images of an ankylosing spondylitis patient who went to the Second Affiliated Hospital of Inner Mongolia Medical University,a three-dimensional spine model(T11-S1)before and after"Y"osteotomy(L3 osteotomy)was reconstructed in Mimics 19.0 software.A 7.5 Nm torque was applied to the top of T11 vertebral body to simulate the movement of the spine under six conditions:flexion,extension,left bending,right bending,left rotation and right rotation.Finally,the range of motion of each vertebral body,the stress of each intervertebral disc,and the stress of the screw rod system were simulated. RESULTS AND CONCLUSION:(1)After"Y"type osteotomy and posterior fixation,the range of motion of all vertebrae in the spine decreased,and the loss rate of upper vertebrae was large(L1:77.95%).(2)The maximum stress of the spinal intervertebral disc before operation occurred at the L1-L2 segment(0.55 MPa),and the maximum stress of the spinal intervertebral disc after operation occurred at the T11-T12 segment(0.50 MPa),and the stress of intervertebral disc below T12 was far less than that before operation.(3)The maximum stress of the screw rod system(166.67 MPa)occurred in the upper and middle segments of the rod body and the root of the pedicle screw.(4)In conclusion,the"Y"type posterior fixation operation enhances the stability of the spine and reduces the range of motion of the spine.The vertebral body decompression of the fixed segment is great and the stress-shielding phenomenon of the lower vertebral body is significant.The stiffness of the rod body and the stress concentration area of the pedicle screw should be strengthened to avoid the fracture of the rod caused by stress fatigue.
Palavras-chave
Texto completo: 1 Índice: WPRIM Idioma: Zh Revista: Chinese Journal of Tissue Engineering Research Ano de publicação: 2024 Tipo de documento: Article
Texto completo: 1 Índice: WPRIM Idioma: Zh Revista: Chinese Journal of Tissue Engineering Research Ano de publicação: 2024 Tipo de documento: Article