Your browser doesn't support javascript.
loading
Biomechanical Analysis of a Pedicle Screw-Rod System with a Novel Cross-Link Configuration
Asian Spine Journal ; : 993-999, 2016.
Artigo em Inglês | WPRIM | ID: wpr-116282
ABSTRACT
STUDY

DESIGN:

The strength effects of a pedicle screw-rod system supplemented with a novel cross-link configuration were biomechanically evaluated in porcine spines.

PURPOSE:

To assess the biomechanical differences between a conventional cross-link pedicle screw-rod system versus a novel cross-link instrumentation, and to determine the effect of the cross-links. OVERVIEW OF LITERATURE Transverse cross-link systems affect torsional rigidity, but are thought to have little impact on the sagittal motion of spinal constructs. We tested the strength effects in pullout and flexion-compression tests of novel cross-link pedicle screw constructs using porcine thoracic and lumbar vertebrae.

METHODS:

Five matched thoracic and lumbar vertebral segments from 15 porcine spines were instrumented with 5.0-mm pedicle screws, which were then connected with 6.0-mm rods after partial corpectomy in the middle vertebral body. The forces required for construct failure in pullout and flexion-compression tests were examined in a randomized manner for three different cross-link configurations un-cross-link control, conventional cross-link, and cross-link passing through the base of the spinous process. Statistical comparisons of strength data were analyzed using Student's t-tests.

RESULTS:

The spinous process group required a significantly greater pullout force for construct failure than the control group (p=0.036). No difference was found between the control and cross-link groups, or the cross-link and spinous process groups in pullout testing. In flexion-compression testing, the spinous processes group required significantly greater forces for construct failure than the control and cross-link groups (p<0.001 and p=0.003, respectively). However, there was no difference between the control and cross-link groups.

CONCLUSIONS:

A novel cross-link configuration that features cross-link devices passing through the base of the spinous processes increased the mechanical resistance in pullout and flexion-compression testing compared to un-cross-link constructs. This configuration provided more resistance to middle-column damage under flexion-compression testing than conventional cross-link configuration.
Assuntos

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Fusão Vertebral / Coluna Vertebral / Parafusos Pediculares / Vértebras Lombares Tipo de estudo: Ensaio Clínico Controlado Idioma: Inglês Revista: Asian Spine Journal Ano de publicação: 2016 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Fusão Vertebral / Coluna Vertebral / Parafusos Pediculares / Vértebras Lombares Tipo de estudo: Ensaio Clínico Controlado Idioma: Inglês Revista: Asian Spine Journal Ano de publicação: 2016 Tipo de documento: Artigo