Your browser doesn't support javascript.
loading
Research on application of modified polyethylene glycol hydrogels in the construction of tissue engineered heart valve / 中华外科杂志
Chinese Journal of Surgery ; (12): 1723-1726, 2008.
Artigo em Chinês | WPRIM | ID: wpr-275979
ABSTRACT
<p><b>OBJECTIVE</b>To explore the effect of the polyethylene glycol (PEG)-hydrogels to enhance the seeding-cells adhesion to the biomaterial scaffolds.</p><p><b>METHODS</b>Sixteen porcine aortic valves were decellularized with Triton X-100 and trypsin, then divided into A and B group, eight in each group. Group A the donor goat's autologous bone marrow mesenchymal stem cells (BMSCs) Selected as the seeding-cells were encapsulated into the modified PEG-hydrogels to complete the process of the cells attaching to the acellular porcine aortic valves. Non-PEG but reservation of BMSCs was modified in Group B. After static culture for 7 d, the mono semilunar tissue engineering heart valve (TEHV) were implanted respectively into each donor goat's abdominal aortas. Gross and histology examination, ultrasonic scanning, electron microscopy observation and biomechanics detection were performed at 16 weeks after operation. The 8 native goat aortic valves from the donor goats were selected at the same time as control group (Group C).</p><p><b>RESULTS</b>There were much more improvements compared Group A to Group B (P < 0.05) in tensile strength [(12.9 +/- 1.3) MPa vs. (8.8 +/- 0.4) MPa], ratio of re-endothelial (84.6% vs. 14.8%) and mural thrombosis (0/8 vs. 8/8). The data illustrated the critical importance of BMSCs differentiation to endothelial and myofibroblast for remodeling into native tissue in microenvironment in vivo.</p><p><b>CONCLUSIONS</b>It is feasible to reconstruct TEHV efficiently by combining modified PEG-hydrogels with acellular biomaterial scaffold and autologous MSCs cells. It can improve the integration of the seeding-cells and scaffold. It can also protect the growth and differentiation of the BMSCs in the systemic circulation effectively.</p>
Assuntos
Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Valva Aórtica / Polietilenoglicóis / Suínos / Bioprótese / Células da Medula Óssea / Cabras / Próteses Valvulares Cardíacas / Células Cultivadas / Implante de Prótese de Valva Cardíaca / Hidrogéis Limite: Animais Idioma: Chinês Revista: Chinese Journal of Surgery Ano de publicação: 2008 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Valva Aórtica / Polietilenoglicóis / Suínos / Bioprótese / Células da Medula Óssea / Cabras / Próteses Valvulares Cardíacas / Células Cultivadas / Implante de Prótese de Valva Cardíaca / Hidrogéis Limite: Animais Idioma: Chinês Revista: Chinese Journal of Surgery Ano de publicação: 2008 Tipo de documento: Artigo