Your browser doesn't support javascript.
loading
Finite element analysis of impact loads on the femur / 中华创伤杂志(英文版)
Chinese Journal of Traumatology ; (6): 44-48, 2007.
Artigo em Inglês | WPRIM | ID: wpr-280868
ABSTRACT
<p><b>OBJECTIVE</b>To investigate the stress distribution and fracture mechanism of proximal femur under impact loads.</p><p><b>METHODS</b>The image data of one male's femur were collected by the Lightspeed multi-lay spiral computed tomography. A 3D finite element model of the femur was established by employing the finite element software ANSYS, which mainly concentrated on the effects of the directions of the impact loads arising from intense movements and the parenchyma on the hip joint as well as those of the femur material properties on the distribution of the Mises equivalent stress in the femur after impact.</p><p><b>RESULTS</b>The numerical results about the effects of the angle sigma of the impact loads to the anterior direction and the angle gamma of the impact loads to the femur shaft on the bone fracture were given. The angle sigma had larger effect on the stress distribution than the angle gamma, which mainly represented the fracture of the upper femur including the femoral neck fracture when the posterolateral femur was impacted. This result was consistent with the clinical one. The parenchyma on the hip joint has relatively large relaxation effect on the impact loads.</p><p><b>CONCLUSIONS</b>A 3D finite element analysis model of the femoral hip joint under dynamic loads is successfully established by using the impact dynamic theory.</p>
Assuntos
Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Fisiologia / Estresse Mecânico / Suporte de Carga / Análise de Elementos Finitos / Fêmur / Modelos Biológicos Limite: Humanos / Masculino Idioma: Inglês Revista: Chinese Journal of Traumatology Ano de publicação: 2007 Tipo de documento: Artigo

Similares

MEDLINE

...
LILACS

LIS

Texto completo: DisponíveL Índice: WPRIM (Pacífico Ocidental) Assunto principal: Fisiologia / Estresse Mecânico / Suporte de Carga / Análise de Elementos Finitos / Fêmur / Modelos Biológicos Limite: Humanos / Masculino Idioma: Inglês Revista: Chinese Journal of Traumatology Ano de publicação: 2007 Tipo de documento: Artigo