Characteristic effect of carbonated hydroxyapatite cement in repairing skeletal defect in a verified experiment / 中国组织工程研究
Chinese Journal of Tissue Engineering Research
; (53): 210-212, 2005.
Article
em Zh
| WPRIM
| ID: wpr-409318
Biblioteca responsável:
WPRO
ABSTRACT
BACKGROUND: Carbonated hydroxyapatite cement is a new type material for skeletal repair and hydroxyapatites have been applied in the clinical treatment of skeletal defect.OBJECTIVE: To observe the effective characteristics of carbonated hydroxyapatite cement on repair of skeletal defect by animal experiment.DESIGN: Paired design, self-controlled and verified experiment was applied in the research.SETTING: Orthopedic Institute and Animal Experimental Center of Chinese PLA.MATERIALS: The experiment was performed in Orthopedic Institute and Animal Experimental Center of Chinese PLA from May 2002 to January 2003, in which, 10 healthy adult male mongrel dogs were applied, body mass weighted varied from 20 to 22 kg.METHODS: Animal model of skeletal defect was prepared on proximal ends of humeri of 10 mongrel dogs thydroxyapatitet were randomized into experimental side and control side. Ceramics repair of skeletal defect was done by carbonated hydroxyapatite cement and high-temperature sintered hydroxyapatite respectively. The animals were sacrificed on the 5th day, 4th, 8th, 12th and 16th weeks successively after operation. The repair effects were performed with X-ray and histological observation.staining.Results of stereomicroscopic and X-ray observations on bilateral skeletal defect: Osseointegration with carbonated hydroxyapatite cement was tight on the experimental side and the interface became unclear gradually with time lasting. The interface between hydroxyapatite and bone was still clear on the and eosin staining and thydroxyapatitet of ground bone with Gimsa staining:On the 8th week on the experimental side, the new bone grew into carbonated hydroxyapatite cement, on the 16th week, the two parts were intermixed and integrated and the bone island was formed around newly generated vessels in carbonated hydroxyapatite cement. On the control side, hydroxyapatite still maintained integrated and the bone interface was clear between hydroxyapatite and bone. On the 16th week, the aggradation of newly generated bone presented on hydroxyapatite surface.CONCLUSION: Carbonated hydroxyapatite cement possesses solidification property in situ, biocompatibility and osseous conductive activity. It is the satisfactory new type material for repair of skeletal defect.
Texto completo:
1
Índice:
WPRIM
Tipo de estudo:
Clinical_trials
/
Prognostic_studies
Idioma:
Zh
Revista:
Chinese Journal of Tissue Engineering Research
Ano de publicação:
2005
Tipo de documento:
Article